A variational construction of chaotic trajectories for a Hamiltonian system on a torus

S. V. Bolotin; P. H. Rabinowitz

Bollettino dell'Unione Matematica Italiana (1998)

  • Volume: 1-B, Issue: 3, page 541-570
  • ISSN: 0392-4041

Abstract

top
A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.

How to cite

top

Bolotin, S. V., and Rabinowitz, P. H.. "A variational construction of chaotic trajectories for a Hamiltonian system on a torus." Bollettino dell'Unione Matematica Italiana 1-B.3 (1998): 541-570. <http://eudml.org/doc/195529>.

@article{Bolotin1998,
abstract = {A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.},
author = {Bolotin, S. V., Rabinowitz, P. H.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Jacobi functional; momentum convex Hamiltonian; saddle equilibrium; homoclinic orbit; variational method; topological entropy},
language = {eng},
month = {10},
number = {3},
pages = {541-570},
publisher = {Unione Matematica Italiana},
title = {A variational construction of chaotic trajectories for a Hamiltonian system on a torus},
url = {http://eudml.org/doc/195529},
volume = {1-B},
year = {1998},
}

TY - JOUR
AU - Bolotin, S. V.
AU - Rabinowitz, P. H.
TI - A variational construction of chaotic trajectories for a Hamiltonian system on a torus
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/10//
PB - Unione Matematica Italiana
VL - 1-B
IS - 3
SP - 541
EP - 570
AB - A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.
LA - eng
KW - Jacobi functional; momentum convex Hamiltonian; saddle equilibrium; homoclinic orbit; variational method; topological entropy
UR - http://eudml.org/doc/195529
ER -

References

top
  1. ARNOLD, V. I.- IL'YASHENKO, Y. S.- ANOSOV, D. V., Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989. 
  2. ARNOLD, V. I.- KOZLOV, V. V.- NEISHTADT, A. I., Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). Zbl1105.70002
  3. AUBRY, S.- LEDAERON, P. Y., The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. MR719634
  4. BIRKHOFF, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927. 
  5. BOLOTIN, S. V., Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. Zbl0403.34053MR524544
  6. BOLOTIN, S. V., Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981. 
  7. BOLOTIN, S. V., The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. Zbl0549.58019MR728558
  8. BOLOTIN, S. V., Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. Zbl0847.58024MR1351032
  9. BOLOTIN, S. V.- KOZLOV, V. V., Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. Zbl0497.70033MR622465
  10. BOLOTIN, S. V., Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. Zbl0788.70004MR1186623
  11. BOLOTIN, S. V., Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. Zbl0951.37029MR1316675
  12. BOLOTIN, S. V.- NEGRINI, P., Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. Zbl0951.37029
  13. BUFFONI, B.- SÉRÉ, E., A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). Zbl0860.58027MR1374173
  14. BUROV, A. A., Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. Zbl0626.70006MR885592
  15. CALDIROLI, P.- JEANJEAN, L., Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. Zbl0887.34044
  16. CIELEBAK, K.- SÉRÉ, E., Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). Zbl0842.58022
  17. COTI ZELATI, V.- RABINOWITZ, P. H., Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. Zbl0744.34045MR1119200
  18. DENG, B., The Shilnikov problem, exponential expansion, strong λ -lemma, C 1 -linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. Zbl0674.34040MR1000687
  19. DEVANEY, R. L., Homoclinic orbits in Hamiltonian systems, J. Differ. Equat.21 (1976), 431-438. Zbl0343.58005MR442990
  20. DEVANEY, R. L., Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. Zbl0406.58019MR494258
  21. GIANNONI, F.- RABINOWITZ, P. H., On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. Zbl0823.34050MR1273342
  22. HEDLUND, G. A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. MR1503086
  23. KALIES, W. D.- VANDERVORST, R. C. A. M., Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. Zbl0872.34033MR1419012
  24. KALIES, W. D.- KWAPISZ, J.- VANDERVORST, R. C. A. M., Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. Zbl0908.34034MR1618147
  25. KATOK, A., Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. Zbl0525.58027MR721728
  26. KATOK, A.- HASSELBLATT, B., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). Zbl0878.58020MR1326374
  27. KOZLOV, V. V., Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. Zbl0434.70018MR556099
  28. KOZLOV, V. V., Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. Zbl0525.70023MR693718
  29. KOZLOV, V. V., Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. Zbl0557.70025MR786086
  30. KOZLOV, V. V.- TEN, V. V., Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. Zbl0871.58043MR1400352
  31. MORSE, M., A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. MR1501263
  32. MATHER, J., Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. Zbl0803.58019MR1275203
  33. PALIS, J.- DE MELO, W., Geometric Theory of Dynamical Systems, Springer-Verlag, 1982. Zbl0491.58001MR669541
  34. RABINOWITZ, P. H., Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations (J. Jost, ed.), International Press (1996), 267-296. Zbl0936.37035MR1449412
  35. RABINOWITZ, P. H., Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. Zbl0898.34048MR1483642
  36. SEÉRÉ, E., Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. Zbl0725.58017MR1143210
  37. SÉRÉ, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. Zbl0803.58013MR1249107
  38. SHILNIKOV, L. P., On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371. 
  39. TURAYEV, D. V.- SHILNIKOV, L. P., On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. Zbl0689.58013MR988994

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.