A variational construction of chaotic trajectories for a Hamiltonian system on a torus
S. V. Bolotin; P. H. Rabinowitz
Bollettino dell'Unione Matematica Italiana (1998)
- Volume: 1-B, Issue: 3, page 541-570
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBolotin, S. V., and Rabinowitz, P. H.. "A variational construction of chaotic trajectories for a Hamiltonian system on a torus." Bollettino dell'Unione Matematica Italiana 1-B.3 (1998): 541-570. <http://eudml.org/doc/195529>.
@article{Bolotin1998,
abstract = {A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.},
author = {Bolotin, S. V., Rabinowitz, P. H.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {Jacobi functional; momentum convex Hamiltonian; saddle equilibrium; homoclinic orbit; variational method; topological entropy},
language = {eng},
month = {10},
number = {3},
pages = {541-570},
publisher = {Unione Matematica Italiana},
title = {A variational construction of chaotic trajectories for a Hamiltonian system on a torus},
url = {http://eudml.org/doc/195529},
volume = {1-B},
year = {1998},
}
TY - JOUR
AU - Bolotin, S. V.
AU - Rabinowitz, P. H.
TI - A variational construction of chaotic trajectories for a Hamiltonian system on a torus
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/10//
PB - Unione Matematica Italiana
VL - 1-B
IS - 3
SP - 541
EP - 570
AB - A geometric criterion for the existence of chaotic trajectories of a Hamiltonian system with two degrees of freedom and the configuration space a torus is given. As an application, positive topological entropy is established for a double pendulum problem.
LA - eng
KW - Jacobi functional; momentum convex Hamiltonian; saddle equilibrium; homoclinic orbit; variational method; topological entropy
UR - http://eudml.org/doc/195529
ER -
References
top- ARNOLD, V. I.- IL'YASHENKO, Y. S.- ANOSOV, D. V., Ordinary differential equations, Encyclopedia of Mathematical Sciences, Vol. 1, Springer-Verlag, 1989.
- ARNOLD, V. I.- KOZLOV, V. V.- NEISHTADT, A. I., Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag (1989). Zbl1105.70002
- AUBRY, S.- LEDAERON, P. Y., The discrete Frenkel-Kontorova model and its extensions, I. Exact results for the ground-states, Physica D, 8 (1983), 381-422. MR719634
- BIRKHOFF, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., IX, New York, 1927.
- BOLOTIN, S. V., Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Matem. Mekhan., 6 (1978), 72-77. Zbl0403.34053MR524544
- BOLOTIN, S. V., Libration Motions of Reversible Hamiltonian Systems, Moscow State University, 1981.
- BOLOTIN, S. V., The existence of homoclinic motions, Vestnik Moskov. Univ. Matem. Mekh., 6 (1983), 98-103. Zbl0549.58019MR728558
- BOLOTIN, S. V., Homoclinic orbits to invariant tori of Hamiltonian systems, Amer. Math. Soc. Transl., Ser. 2, 168 (1995), 21-90. Zbl0847.58024MR1351032
- BOLOTIN, S. V.- KOZLOV, V. V., Libration in systems with many degrees of freedom, J. Appl. Math. Mech. (PMM), 42 (1978), 245-250. Zbl0497.70033MR622465
- BOLOTIN, S. V., Variational methods for constructing chaotic motions in the rigid body dynamics, Prikl. Matem. i Mekhan., 56 (1992), 230-239. Zbl0788.70004MR1186623
- BOLOTIN, S. V., Variational criteria for nonintegrability and chaos in Hamiltonian systems, in: Hamiltonian Systems: Integrability and Chaotic Behavior, NATO ASI Series, 331, Plenum Press (1994), 173-179. Zbl0951.37029MR1316675
- BOLOTIN, S. V.- NEGRINI, P., Variational criteria for nonintegrability, Russian J. Math. Phys., No 1, 1998. Zbl0951.37029
- BUFFONI, B.- SÉRÉ, E., A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. (1996). Zbl0860.58027MR1374173
- BUROV, A. A., Nonexistence of an additional integral of the problem of a planar heavy double pendulum, Prikl. Matem. i Mekhan., 50 (1986), 168-171. Zbl0626.70006MR885592
- CALDIROLI, P.- JEANJEAN, L., Homoclinics and heteroclinics for a class of conservative singular dynamical systems, Preprint, 1996. Zbl0887.34044
- CIELEBAK, K.- SÉRÉ, E., Pseudo-holomorphic curves and multiplicity of homoclinic orbits, Duke Math. J. (1996). Zbl0842.58022
- COTI ZELATI, V.- RABINOWITZ, P. H., Homoclinic orbits for second order Hamiltonian systems posessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727. Zbl0744.34045MR1119200
- DENG, B., The Shilnikov problem, exponential expansion, strong -lemma, -linearization and homoclinic bifurcation, J. Differ. Equat., 79 (1989), 189-231. Zbl0674.34040MR1000687
- DEVANEY, R. L., Homoclinic orbits in Hamiltonian systems, J. Differ. Equat.21 (1976), 431-438. Zbl0343.58005MR442990
- DEVANEY, R. L., Transversal homoclinic orbits in an integrable system, Amer. J. Math., 100 (1978), 631-642. Zbl0406.58019MR494258
- GIANNONI, F.- RABINOWITZ, P. H., On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems, NoDEA, 1 (1993), 1-49. Zbl0823.34050MR1273342
- HEDLUND, G. A., Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math., 33 (1932), 719-739. MR1503086
- KALIES, W. D.- VANDERVORST, R. C. A. M., Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, Preprint, 1995. Zbl0872.34033MR1419012
- KALIES, W. D.- KWAPISZ, J.- VANDERVORST, R. C. A. M., Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Preprint, 1996. Zbl0908.34034MR1618147
- KATOK, A., Entropy and closed geodesics, Ergod. Theor. Dynam. Syst., 2 (1982), 339-367. Zbl0525.58027MR721728
- KATOK, A.- HASSELBLATT, B., Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1995). Zbl0878.58020MR1326374
- KOZLOV, V. V., Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk. SSSR, 249 (1979), 1299-1302. Zbl0434.70018MR556099
- KOZLOV, V. V., Integrability and nonintegrability in classical mechanics, Uspekhi Mat. Nauk, 38 (1983), 3-67. Zbl0525.70023MR693718
- KOZLOV, V. V., Calculus of variations in large and classical mechanics, Uspekhi Matem. Nauk, 40 (1985), 33-60. Zbl0557.70025MR786086
- KOZLOV, V. V.- TEN, V. V., Topology of domains of possible motion for integrable systems, Matem. Sbornik, 187 (1996), 59-64. Zbl0871.58043MR1400352
- MORSE, M., A fundamental class of geodesics in any closed surface of genus greater than one, Trans. Amer. Math. Soc., 26 (1924), 25-61. MR1501263
- MATHER, J., Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349-1386. Zbl0803.58019MR1275203
- PALIS, J.- DE MELO, W., Geometric Theory of Dynamical Systems, Springer-Verlag, 1982. Zbl0491.58001MR669541
- RABINOWITZ, P. H., Homoclinics for a singular Hamiltonian system, to appear in Geometric Analysis and the Calculus of Variations (J. Jost, ed.), International Press (1996), 267-296. Zbl0936.37035MR1449412
- RABINOWITZ, P. H., Heteroclinics for a Hamiltonian system of double pendulum type, to appear in Top. Methods in Nonlin. Analysis, Vol. 9 (1997), 41-76. Zbl0898.34048MR1483642
- SEÉRÉ, E., Existence of infinitely many homoclinics in Hamiltonian systems, Math. Z., 209 (1992), 27-42. Zbl0725.58017MR1143210
- SÉRÉ, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Nonlin., 10 (1993), 561-590. Zbl0803.58013MR1249107
- SHILNIKOV, L. P., On a Poincaré-Birkhoff problem, Math. USSR Sbornik, 3 (1967), 353-371.
- TURAYEV, D. V.- SHILNIKOV, L. P., On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk SSSR, 304 (1989), 811-814. Zbl0689.58013MR988994
Citations in EuDML Documents
top- Massimiliano Berti, Philippe Bolle, Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium
- Massimiliano Berti, Philippe Bolle, Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium
- Elena Bosetto, Enrico Serra, A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.