A variational approach to chaotic dynamics in periodically forced nonlinear oscillators

Elena Bosetto; Enrico Serra

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 6, page 673-709
  • ISSN: 0294-1449

How to cite

top

Bosetto, Elena, and Serra, Enrico. "A variational approach to chaotic dynamics in periodically forced nonlinear oscillators." Annales de l'I.H.P. Analyse non linéaire 17.6 (2000): 673-709. <http://eudml.org/doc/78505>.

@article{Bosetto2000,
author = {Bosetto, Elena, Serra, Enrico},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {chaotic dynamics; heteroclinic solutions; periodic orbits; variational approach},
language = {eng},
number = {6},
pages = {673-709},
publisher = {Gauthier-Villars},
title = {A variational approach to chaotic dynamics in periodically forced nonlinear oscillators},
url = {http://eudml.org/doc/78505},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Bosetto, Elena
AU - Serra, Enrico
TI - A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 6
SP - 673
EP - 709
LA - eng
KW - chaotic dynamics; heteroclinic solutions; periodic orbits; variational approach
UR - http://eudml.org/doc/78505
ER -

References

top
  1. [1] Alessio F., Calanchi M., Serra E., Complex dynamics in a class of reversible equations, in: Proc. of Autumn School on Nonlinear Analysis and Differential Equations, Lisbon, 1998, to appear. Zbl0994.34029MR1800617
  2. [2] Amann H., Ordinary Differential Equations, De Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
  3. [3] Ambrosetti A., Badiale M., Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. IHP, Anal. non Lin.15 (1998) 233-252. Zbl1004.37043MR1614571
  4. [4] Bangert V., Mather sets for twist maps and geodesics on tori, in: Dinamics Reported, Vol.1, Teubner, 1988, pp. 1-56. Zbl0664.53021MR945963
  5. [5] Bolotin S.V., The existence of homoclinic motions, Vest. Mosk. Univ., Matem.38 (1983) 98-103. Zbl0549.58019MR728558
  6. [6] Bolotin S.V., Rabinowitz P.H., A variational construction of chaotic trajectories for a Hamiltonian system on a torus, Boll. UMI.1 (1998) 541-570. Zbl0957.70020MR1662325
  7. [7] Buffoni B., Séré E., A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math.49 (1996) 285-305. Zbl0860.58027MR1374173
  8. [8] Calanchi M., Serra E., Homoclinic solutions to periodic motions in a class of reversible equations, Calc. Var. and PDEs.9 (1999) 157-184. Zbl0967.34041MR1714117
  9. [9] Coti Zelati V., Ekeland I., Séré E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Annalen288 (1990) 133-160. Zbl0731.34050MR1070929
  10. [10] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. AMS4 (1991) 693-727. Zbl0744.34045MR1119200
  11. [11] Coti Zelati V., Rabinowitz P.H., Multibump periodic solutions for a family of Hamiltonian systems, Topol. Methods in Nonlinear Anal.4 (1995) 31-57. Zbl0819.34028MR1321808
  12. [12] Mather J.N., Variational construction of connecting orbits, Ann. Inst. Fourier43 (1993)1349-1386. Zbl0803.58019MR1275203
  13. [13] Maxwell T.O., Heteroclinic chains for a reversible Hamiltonian system, Nonlin. Anal. TMA28 (1997) 871-887. Zbl0870.34050MR1422191
  14. [14] Montecchiari P., Nolasco M., Terracini S., A global condition for periodic Duffing-like equations, Trans. AMS351 (1999) 3713-3724. Zbl0926.37005MR1487629
  15. [15] Offin D.C., Yu H.-F., Homoclinic orbits in the forced pendulum system, Fields Inst. Comm.8 (1996) 113-126. Zbl0851.34048MR1383843
  16. [16] Rabinowitz P.H., Heteroclinics for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems14 (1994) 817-829. Zbl0818.34025MR1304144
  17. [17] Rabinowitz P.H., Heteroclinics for a reversible Hamiltonian system, 2, Differential Integral Equations7 (1994) 1557-1572. Zbl0835.34050MR1269671
  18. [18] Rabinowitz P.H., Connecting orbits for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems, to appear. Zbl0981.37020MR1804957
  19. [19] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit.209 (1992) 27-42. Zbl0725.58017MR1143210
  20. [20] Séré E., Looking for the Bernoulli shift, Ann. IHP, Anal. non Lin.10 (1993) 561- 590. Zbl0803.58013MR1249107
  21. [21] Serra E., Tarallo M., Terracini S., On the structure of the solution set of forced pendulum-type equations, J. Differential Equations131 (1996) 189-208. Zbl0864.34038MR1419011
  22. [22] Terracini S., Nondegeneracy and chaotic motions for a class of almost-periodic Lagrangian systems, Nonlin. Anal. TMA37 (1999) 337-361. Zbl0948.37022MR1694395
  23. [23] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, 1990. Zbl0701.58001MR1056699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.