A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 6, page 673-709
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBosetto, Elena, and Serra, Enrico. "A variational approach to chaotic dynamics in periodically forced nonlinear oscillators." Annales de l'I.H.P. Analyse non linéaire 17.6 (2000): 673-709. <http://eudml.org/doc/78505>.
@article{Bosetto2000,
author = {Bosetto, Elena, Serra, Enrico},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {chaotic dynamics; heteroclinic solutions; periodic orbits; variational approach},
language = {eng},
number = {6},
pages = {673-709},
publisher = {Gauthier-Villars},
title = {A variational approach to chaotic dynamics in periodically forced nonlinear oscillators},
url = {http://eudml.org/doc/78505},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Bosetto, Elena
AU - Serra, Enrico
TI - A variational approach to chaotic dynamics in periodically forced nonlinear oscillators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 6
SP - 673
EP - 709
LA - eng
KW - chaotic dynamics; heteroclinic solutions; periodic orbits; variational approach
UR - http://eudml.org/doc/78505
ER -
References
top- [1] Alessio F., Calanchi M., Serra E., Complex dynamics in a class of reversible equations, in: Proc. of Autumn School on Nonlinear Analysis and Differential Equations, Lisbon, 1998, to appear. Zbl0994.34029MR1800617
- [2] Amann H., Ordinary Differential Equations, De Gruyter, Berlin, 1990. Zbl0708.34002MR1071170
- [3] Ambrosetti A., Badiale M., Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. IHP, Anal. non Lin.15 (1998) 233-252. Zbl1004.37043MR1614571
- [4] Bangert V., Mather sets for twist maps and geodesics on tori, in: Dinamics Reported, Vol.1, Teubner, 1988, pp. 1-56. Zbl0664.53021MR945963
- [5] Bolotin S.V., The existence of homoclinic motions, Vest. Mosk. Univ., Matem.38 (1983) 98-103. Zbl0549.58019MR728558
- [6] Bolotin S.V., Rabinowitz P.H., A variational construction of chaotic trajectories for a Hamiltonian system on a torus, Boll. UMI.1 (1998) 541-570. Zbl0957.70020MR1662325
- [7] Buffoni B., Séré E., A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math.49 (1996) 285-305. Zbl0860.58027MR1374173
- [8] Calanchi M., Serra E., Homoclinic solutions to periodic motions in a class of reversible equations, Calc. Var. and PDEs.9 (1999) 157-184. Zbl0967.34041MR1714117
- [9] Coti Zelati V., Ekeland I., Séré E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Annalen288 (1990) 133-160. Zbl0731.34050MR1070929
- [10] Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. AMS4 (1991) 693-727. Zbl0744.34045MR1119200
- [11] Coti Zelati V., Rabinowitz P.H., Multibump periodic solutions for a family of Hamiltonian systems, Topol. Methods in Nonlinear Anal.4 (1995) 31-57. Zbl0819.34028MR1321808
- [12] Mather J.N., Variational construction of connecting orbits, Ann. Inst. Fourier43 (1993)1349-1386. Zbl0803.58019MR1275203
- [13] Maxwell T.O., Heteroclinic chains for a reversible Hamiltonian system, Nonlin. Anal. TMA28 (1997) 871-887. Zbl0870.34050MR1422191
- [14] Montecchiari P., Nolasco M., Terracini S., A global condition for periodic Duffing-like equations, Trans. AMS351 (1999) 3713-3724. Zbl0926.37005MR1487629
- [15] Offin D.C., Yu H.-F., Homoclinic orbits in the forced pendulum system, Fields Inst. Comm.8 (1996) 113-126. Zbl0851.34048MR1383843
- [16] Rabinowitz P.H., Heteroclinics for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems14 (1994) 817-829. Zbl0818.34025MR1304144
- [17] Rabinowitz P.H., Heteroclinics for a reversible Hamiltonian system, 2, Differential Integral Equations7 (1994) 1557-1572. Zbl0835.34050MR1269671
- [18] Rabinowitz P.H., Connecting orbits for a reversible Hamiltonian system, Ergodic Theory Dynamical Systems, to appear. Zbl0981.37020MR1804957
- [19] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit.209 (1992) 27-42. Zbl0725.58017MR1143210
- [20] Séré E., Looking for the Bernoulli shift, Ann. IHP, Anal. non Lin.10 (1993) 561- 590. Zbl0803.58013MR1249107
- [21] Serra E., Tarallo M., Terracini S., On the structure of the solution set of forced pendulum-type equations, J. Differential Equations131 (1996) 189-208. Zbl0864.34038MR1419011
- [22] Terracini S., Nondegeneracy and chaotic motions for a class of almost-periodic Lagrangian systems, Nonlin. Anal. TMA37 (1999) 337-361. Zbl0948.37022MR1694395
- [23] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, 1990. Zbl0701.58001MR1056699
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.