Observations on W 1 , p estimates for divergence elliptic equations with VMO coefficients

P. Auscher; M. Qafsaoui

Bollettino dell'Unione Matematica Italiana (2002)

  • Volume: 5-B, Issue: 2, page 487-509
  • ISSN: 0392-4041

Abstract

top
In this paper, we make some observations on the work of Di Fazio concerning W 1 , p estimates, 1 < p < , for solutions of elliptic equations div A u = div f , on a domain Ω with Dirichlet data 0 whenever A V M O Ω and f L p Ω . We weaken the assumptions allowing real and complex non-symmetric operators and C 1 boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose two such representations.

How to cite

top

Auscher, P., and Qafsaoui, M.. "Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients." Bollettino dell'Unione Matematica Italiana 5-B.2 (2002): 487-509. <http://eudml.org/doc/195627>.

@article{Auscher2002,
abstract = {In this paper, we make some observations on the work of Di Fazio concerning $W^\{1,p\}$ estimates, $1< p<\infty$, for solutions of elliptic equations $\text\{div\} \, A \nabla u = \text\{div\} f$ , on a domain $\Omega$ with Dirichlet data $0$ whenever $A \in VMO(\Omega)$ and $f \in L^\{p\} (\Omega)$. We weaken the assumptions allowing real and complex non-symmetric operators and $C^1$ boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose two such representations.},
author = {Auscher, P., Qafsaoui, M.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {487-509},
publisher = {Unione Matematica Italiana},
title = {Observations on $W^\{1,p\}$ estimates for divergence elliptic equations with VMO coefficients},
url = {http://eudml.org/doc/195627},
volume = {5-B},
year = {2002},
}

TY - JOUR
AU - Auscher, P.
AU - Qafsaoui, M.
TI - Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients
JO - Bollettino dell'Unione Matematica Italiana
DA - 2002/6//
PB - Unione Matematica Italiana
VL - 5-B
IS - 2
SP - 487
EP - 509
AB - In this paper, we make some observations on the work of Di Fazio concerning $W^{1,p}$ estimates, $1< p<\infty$, for solutions of elliptic equations $\text{div} \, A \nabla u = \text{div} f$ , on a domain $\Omega$ with Dirichlet data $0$ whenever $A \in VMO(\Omega)$ and $f \in L^{p} (\Omega)$. We weaken the assumptions allowing real and complex non-symmetric operators and $C^1$ boundary. We also consider the corresponding inhomogeneous Neumann problem for which we prove the similar result. The main tool is an appropriate representation for the Green (and Neumann) function on the upper half space. We propose two such representations.
LA - eng
UR - http://eudml.org/doc/195627
ER -

References

top
  1. ANGELETTI, J. M.- MAZET, S.- TCHAMITCHIAN, H., Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients. In Multiscale wavelet methods for partial differential equations, pages 495-539. Academic Press, San Diego, CA, 1997. MR1475008
  2. AUSCHER, P.- TCHAMITCHIAN, PH., Square root problem for divergence operators and related topics, volume 249 of Astérisque, Soc. Math. France, 1998. Zbl0909.35001MR1651262
  3. AUSCHER, P.- TCHAMITCHIAN, PH., On square roots of elliptic second order divergence operators on strongly lipschitz domains: L p theory, to appear in Math. Annalen. Zbl1161.35350MR1846778
  4. BRAMANTI, M.- BRANDOLINI, L., L p estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2) (2000), 781-822. Zbl0935.35037MR1608289
  5. CHIARENZA, F., L p regularity for systems of PDEs, with coefficients in VMO. In Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), pages 1-32, Prometheus, Prague, 1994. Zbl0830.35017MR1322308
  6. CHIARENZA, F.- FRANCIOSI, M.- FRASCA, M., Lp-estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1) (1994), 27-32. Zbl0803.35016MR1273890
  7. CHIARENZA, F.- FRASCA, M.- LONGO, P., Interior W 2 , p estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1) (1991), 149-168. Zbl0772.35017MR1191890
  8. CHIARENZA, F.- FRASCA, M.- LONGO, P., W 2 , p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (2) (1993), 841-853. Zbl0818.35023MR1088476
  9. COIFMAN, R. R.- ROCHBERG, R.- WEISS, G., Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2), 103 (3) (1976), 611-635. Zbl0326.32011MR412721
  10. DAVID, G.- JOURNÉ, J. L., A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2), 120 (2) (1984), 371-397. Zbl0567.47025MR763911
  11. DI FAZIO, G., L p estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (2) (1996), 409-420. Zbl0865.35048MR1405255
  12. DI FAZIO, G.- PALAGACHEV, D. K., Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolin., 37 (3) (1996), 537-556. Zbl0881.35028MR1426919
  13. DI FAZIO, G.- PALAGACHEV, D. K., Oblique derivative problem for quasilinear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc., 53 (3) (1996), 501-513. Zbl0879.35056MR1388600
  14. FABES, E. B.- JERISON, D. S.- KENIG, C. E., Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure, Ann. of Math. (2), 119 (1) (1984), 121-141. Zbl0551.35024MR736563
  15. FAN, D.- LU, SH.- YANG, D., Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., 5 (5) (1998), 425-440. Zbl0917.35017MR1643604
  16. IWANIEC, T.- SBORDONE, C., Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math., 74 (1998), 183-212. Zbl0909.35039MR1631658
  17. JERISON, D.- KENIG, C. E., The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1) (1995), 161-219. Zbl0832.35034MR1331981
  18. MAUGERI, A.- PALAGACHEV, D. K.- VITANZA, C., Oblique derivative problem for uniformly elliptic operators with VMO coefficients and applications, C. R. Acad. Sci. Paris Sér. I Math., 327 (1) (1998), 53-58. Zbl0990.35130MR1650200
  19. MENDEZ, O.- MITREA, M., Complex powers of the Neumann laplacian in lipschitz domains, Math. Nach., 1999, to appear. Zbl0981.35014MR1817850
  20. PALAGACHEV, D. K., Quasilinear elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 347 (7) (1995), 2481-2493. Zbl0833.35048MR1308019
  21. RAGUSA, M. A., Dirichlet problem in Morrey spaces for elliptic equations in nondivergence form with VMO coefficients. In Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, 1997), pages 385-390, Utrecht, 1998, VSP. Zbl0911.35028MR1644961
  22. SIMADER, H. G.. On Dirichlet's boundary value problem, Springer-Verlag, Berlin, 1972. Lecture Notes in Mathematics, Vol. 268. Zbl0242.35027
  23. STEIN, E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970, Princeton Mathematical Series, No. 30. Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.