Oblique derivative problem for elliptic equations in non-divergence form with coefficients
Giuseppe di Fazio; Dian K. Palagachev
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 3, page 537-556
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topdi Fazio, Giuseppe, and Palagachev, Dian K.. "Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 537-556. <http://eudml.org/doc/247884>.
@article{diFazio1996,
abstract = {A priori estimates and strong solvability results in Sobolev space $W^\{2,p\}(\Omega )$, $1<p<\infty $ are proved for the regular oblique derivative problem \[ \{\left\lbrace \begin\{array\}\{ll\} \sum \_\{i,j=1\}^n a^\{ij\}(x)\frac\{\partial ^2u\}\{\partial x\_i\partial x\_j\} =f(x) \text\{ a.e. \} \Omega \\ \frac\{\partial u\}\{\partial \ell \}+\sigma (x)u =\varphi (x) \text\{ on \} \partial \Omega \end\{array\}\right.\} \]
when the principal coefficients $a^\{ij\}$ are $V\hspace\{-1.2pt\}MO\cap L^\infty $ functions.},
author = {di Fazio, Giuseppe, Palagachev, Dian K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {oblique derivative; elliptic equation; non divergence form; $V\hspace\{-1.2pt\}MO$ coefficients; strong solution; oblique derivative; elliptic equation; non divergence form; VMO coefficients; strong solution; singular integral estimates},
language = {eng},
number = {3},
pages = {537-556},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients},
url = {http://eudml.org/doc/247884},
volume = {37},
year = {1996},
}
TY - JOUR
AU - di Fazio, Giuseppe
AU - Palagachev, Dian K.
TI - Oblique derivative problem for elliptic equations in non-divergence form with $VMO$ coefficients
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 537
EP - 556
AB - A priori estimates and strong solvability results in Sobolev space $W^{2,p}(\Omega )$, $1<p<\infty $ are proved for the regular oblique derivative problem \[ {\left\lbrace \begin{array}{ll} \sum _{i,j=1}^n a^{ij}(x)\frac{\partial ^2u}{\partial x_i\partial x_j} =f(x) \text{ a.e. } \Omega \\ \frac{\partial u}{\partial \ell }+\sigma (x)u =\varphi (x) \text{ on } \partial \Omega \end{array}\right.} \]
when the principal coefficients $a^{ij}$ are $V\hspace{-1.2pt}MO\cap L^\infty $ functions.
LA - eng
KW - oblique derivative; elliptic equation; non divergence form; $V\hspace{-1.2pt}MO$ coefficients; strong solution; oblique derivative; elliptic equation; non divergence form; VMO coefficients; strong solution; singular integral estimates
UR - http://eudml.org/doc/247884
ER -
References
top- Acquistapace P., On regularity for linear elliptic systems, Ann. Mat. Pura Appl. 161 (1992), 231-270. (1992) Zbl0802.35015MR1174819
- Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623-727. (1959) Zbl0093.10401MR0125307
- Adams R., Sobolev Spaces, Academic Press, New York, 1975. Zbl1098.46001MR0450957
- Bramanti M., Commutators of integral operators with positive kernels, Le Matematiche XLIX (1994), 149-168. (1994) Zbl0840.42009MR1386370
- Chicco M., Third boundary value problem in for a class of linear second order elliptic partial differential equations, Rend. Ist. Mat. Univ. Trieste 4 (1972), 85-94. (1972) MR0348258
- Chicco M., Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl. (4) 112 (1977), 241-259; errata, ibid. (4) 130 (1982), 399-401. (1977) MR0435582
- Chiarenza F., Frasca M., Longo P., Interior estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche di Mat. 60 (1991), 149-168. (1991) MR1191890
- Chiarenza F., Frasca M., Longo P., -solvability of the Dirichlet problem for non divergence elliptic equations with coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. (1993) Zbl0818.35023MR1088476
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. Zbl1042.35002MR0737190
- John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498
- Luo Y., An Aleksandrov-Bakelman type maximum principle and applications, J. Diff. Equations 101 (1993), 213-231. (1993) Zbl0812.35014MR1204327
- Luo Y., Trudinger N.S., Linear second order elliptic equations with Venttsel boundary conditions, Proc. Roy. Soc. Edinburgh 118A (1991), 193-207. (1991) Zbl0771.35014MR1121663
- Miranda C., Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura Appl. 63 (1963), 353-386. (1963) Zbl0156.34001MR0170090
- Nicolosi F., Il terzo problema al contorno per le equazioni lineari ellittiche a coefficienti discontinui, Rend. Circ. Mat. Palermo 33 (1984), 351-368. (1984)
- Nirenberg L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162. (1959) Zbl0088.07601MR0109940
- Sarason D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) Zbl0319.42006MR0377518
- Talenti G., Problemi di derivata obliqua per equazioni ellittiche in due variabili, Boll. Un. Mat. Ital. (3) 22 (1967), 505-526. (1967) Zbl0156.33803MR0231048
- Viola G., Una stima a priori per la soluzione del terzo problema al contorno associato ad una classe di equazioni ellittiche del secondo ordine a coefficienti non regolari, Boll. Un. Mat. Ital. (6) 3-B (1984), 397-411. (1984)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.