Displaying similar documents to “Observations on W 1 , p estimates for divergence elliptic equations with VMO coefficients”

On the range of elliptic operators discontinuous at one point

Cristina Giannotti (2002)

Bollettino dell'Unione Matematica Italiana

Similarity:

Let L be a second order, uniformly elliptic, non variational operator with coefficients which are bounded and measurable in R d ( d 3 ) and continuous in R d 0 . Then, if Ω R d is a bounded domain, we prove that L W 2 , p Ω is dense in L p Ω for any p 1 , d / 2 .

Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result

Bruno Canuto, Otared Kavian (2004)

Bollettino dell'Unione Matematica Italiana

Similarity:

For a bounded and sufficiently smooth domain Ω in R N , N 2 , let λ k k = 1 and φ k k = 1 be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) - div a x φ k + q x φ k = λ k ϱ x φ k  in  Ω , a n φ k = 0  su  Ω . We prove that knowledge of the Dirichlet boundary spectral data λ k k = 1 , φ k | Ω k = 1 determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map γ for a related elliptic problem. Under suitable hypothesis on the coefficients a , q , ϱ their identifiability is then proved. We prove also analogous results for...

One-dimensional symmetry for solutions of quasilinear equations in R 2

Alberto Farina (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we consider two-dimensional quasilinear equations of the form div a u u + f u = 0 and study the properties of the solutions u with bounded and non-vanishing gradient. Under a weak assumption involving the growth of the argument of u (notice that arg u is a well-defined real function since u > 0 on R 2 ) we prove that u is one-dimensional, i.e., u = u ν x for some unit vector ν . As a consequence of our result we obtain that any solution u having one positive derivative is one-dimensional. This result provides...

Global regularity for solutions to Dirichlet problem for discontinuous elliptic systems with nonlinearity q > 1 and with natural growth

Sofia Giuffrè, Giovanna Idone (2005)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper we deal with the Hölder regularity up to the boundary of the solutions to a nonhomogeneous Dirichlet problem for second order discontinuous elliptic systems with nonlinearity q > 1 and with natural growth. The aim of the paper is to clarify that the solutions of the above problem are always global Hölder continuous in the case of the dimension n = q without any kind of regularity assumptions on the coefficients. As a consequence of this sharp result, the singular sets are always...

Global existence and regularity of solutions for complex Ginzburg-Landau equations

Stéphane Descombes, Mohand Moussaoui (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Si considerano equazioni di Ginzburg-Landau complesse del tipo u t - α Δ u + P u 2 u = 0 in R N dove P è polinomio di grado K a coefficienti complessi e α è un numero complesso con parte reale positiva α . Nell'ipotesi che la parte reale del coefficiente del termine di grado massimo P sia positiva, si dimostra l'esistenza e la regolarità di una soluzione globale nel caso α < C α , dove C dipende da K e N .