Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media

Y. Amirat; A. Ziani

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 1, page 109-128
  • ISSN: 0392-4041

Abstract

top
We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.

How to cite

top

Amirat, Y., and Ziani, A.. "Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 109-128. <http://eudml.org/doc/195681>.

@article{Amirat2004,
abstract = {We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.},
author = {Amirat, Y., Ziani, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {a priori estimates; viscosity type solutions; compensated compactness},
language = {eng},
month = {2},
number = {1},
pages = {109-128},
publisher = {Unione Matematica Italiana},
title = {Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media},
url = {http://eudml.org/doc/195681},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Amirat, Y.
AU - Ziani, A.
TI - Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 109
EP - 128
AB - We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.
LA - eng
KW - a priori estimates; viscosity type solutions; compensated compactness
UR - http://eudml.org/doc/195681
ER -

References

top
  1. AMIRAT, Y.- HAMDACHE, K.- ZIANI, A., Mathematical Analysis for compressible miscible displacement models in porous media, Mathematical Models and Methods in Applied Sciences, 6 (6) (1996), 729-747. Zbl0859.35087MR1404826
  2. AMIRAT, Y.- ZIANI, A., Global weak solutions for one-dimensional miscible flow models in porous media, Journal of Math. Analysis and Applications, 220 (2) (1998), 697-718. Zbl0911.35063MR1614944
  3. AUBIN, J.-P., Un théorème de compacité, C. R. Acad. Sci., 256 (1963), 5042-5044. Zbl0195.13002MR152860
  4. BEAR, J., Dynamics of Fluids in Porous Media (American Elsevier, 1972). Zbl1191.76001
  5. BOCCARDO, L.- GALLOUËT, T., Non linear elliptic and parabolic equations involving measure data, J. Functional Analysis, 87 (1989), 149-169. Zbl0707.35060
  6. CHOU, S. H.- LI, Q., Mixed finite element methods for compressible miscible displacement in porous media, Math. Comput., 57 (196) (1991), 507-527. Zbl0732.76081MR1094942
  7. DOUGLAS, J.- ROBERTS, J. E., Numerical methods for a model of compressible miscible displacement in porous media, Math. of Computation, 41 (164) (1983), 441-459. Zbl0537.76062MR717695
  8. FENG, X., Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media, Nonlinear Analysis, Theory, Methods & Applications, 23 (12) (1994), 1515-1531. Zbl0822.35065
  9. KAZHIKHOV, A. V., Recent developments in the global theory of two-dimensional compressible Navier-Stokes equations, Seminar on Mathematical Sciences, Keio University, Department of Mathematics, 25 (1998). Zbl0893.35099MR1600212
  10. LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod-Gauthier-Villars, 1969). Zbl0189.40603MR259693
  11. MURAT, F., Soluciones renormalizadas de EDP elipticas no lineales, Prépublication du Laboratoire d’Analyse Numérique, 93023 (Université de Paris 6, 1993). 
  12. MURAT, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. Zbl0399.46022MR506997
  13. PEACEMAN, D. W., Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977). 
  14. PEARSON, J. R. A.- TARDY, P. M. J., Models for flow of non-Newtonian and complex fluids through porous media, J. Non-Newtonian Fluid Mech., 102 (2002), 447-473. Zbl0997.76006
  15. SCHEIDEGGER, A. E., The Physics of flow through porous media (Univ. Toronto Press, 1974). Zbl0095.22402
  16. TARTAR, L., Compensated Compactness and Applications to P.D.E., in Non Linear Analysis and Mechanics, Heriot-Watt Symposium, R.J. Knops ed., Research Notes in Math., 4 (39) (Pitman Press, 1979), 136-212. Zbl0437.35004MR584398
  17. M.-F. WHEELER (ed.), Numerical simulation in oil recovery, The IMA Volumes in Mathematics and Its Applications, 11 (Springer-Verlag, 1988). Zbl0698.00039MR922953
  18. YOUNG, L. C., A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comp. Methods in Applied Mech. and Engineering, 47 (1984), 3-46. Zbl0545.76124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.