Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 1, page 109-128
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topAmirat, Y., and Ziani, A.. "Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media." Bollettino dell'Unione Matematica Italiana 7-B.1 (2004): 109-128. <http://eudml.org/doc/195681>.
@article{Amirat2004,
abstract = {We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.},
author = {Amirat, Y., Ziani, A.},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {a priori estimates; viscosity type solutions; compensated compactness},
language = {eng},
month = {2},
number = {1},
pages = {109-128},
publisher = {Unione Matematica Italiana},
title = {Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media},
url = {http://eudml.org/doc/195681},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Amirat, Y.
AU - Ziani, A.
TI - Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/2//
PB - Unione Matematica Italiana
VL - 7-B
IS - 1
SP - 109
EP - 128
AB - We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.
LA - eng
KW - a priori estimates; viscosity type solutions; compensated compactness
UR - http://eudml.org/doc/195681
ER -
References
top- AMIRAT, Y.- HAMDACHE, K.- ZIANI, A., Mathematical Analysis for compressible miscible displacement models in porous media, Mathematical Models and Methods in Applied Sciences, 6 (6) (1996), 729-747. Zbl0859.35087MR1404826
- AMIRAT, Y.- ZIANI, A., Global weak solutions for one-dimensional miscible flow models in porous media, Journal of Math. Analysis and Applications, 220 (2) (1998), 697-718. Zbl0911.35063MR1614944
- AUBIN, J.-P., Un théorème de compacité, C. R. Acad. Sci., 256 (1963), 5042-5044. Zbl0195.13002MR152860
- BEAR, J., Dynamics of Fluids in Porous Media (American Elsevier, 1972). Zbl1191.76001
- BOCCARDO, L.- GALLOUËT, T., Non linear elliptic and parabolic equations involving measure data, J. Functional Analysis, 87 (1989), 149-169. Zbl0707.35060
- CHOU, S. H.- LI, Q., Mixed finite element methods for compressible miscible displacement in porous media, Math. Comput., 57 (196) (1991), 507-527. Zbl0732.76081MR1094942
- DOUGLAS, J.- ROBERTS, J. E., Numerical methods for a model of compressible miscible displacement in porous media, Math. of Computation, 41 (164) (1983), 441-459. Zbl0537.76062MR717695
- FENG, X., Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media, Nonlinear Analysis, Theory, Methods & Applications, 23 (12) (1994), 1515-1531. Zbl0822.35065
- KAZHIKHOV, A. V., Recent developments in the global theory of two-dimensional compressible Navier-Stokes equations, Seminar on Mathematical Sciences, Keio University, Department of Mathematics, 25 (1998). Zbl0893.35099MR1600212
- LIONS, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod-Gauthier-Villars, 1969). Zbl0189.40603MR259693
- MURAT, F., Soluciones renormalizadas de EDP elipticas no lineales, Prépublication du Laboratoire dAnalyse Numérique, 93023 (Université de Paris 6, 1993).
- MURAT, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. Zbl0399.46022MR506997
- PEACEMAN, D. W., Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977).
- PEARSON, J. R. A.- TARDY, P. M. J., Models for flow of non-Newtonian and complex fluids through porous media, J. Non-Newtonian Fluid Mech., 102 (2002), 447-473. Zbl0997.76006
- SCHEIDEGGER, A. E., The Physics of flow through porous media (Univ. Toronto Press, 1974). Zbl0095.22402
- TARTAR, L., Compensated Compactness and Applications to P.D.E., in Non Linear Analysis and Mechanics, Heriot-Watt Symposium, R.J. Knops ed., Research Notes in Math., 4 (39) (Pitman Press, 1979), 136-212. Zbl0437.35004MR584398
- M.-F. WHEELER (ed.), Numerical simulation in oil recovery, The IMA Volumes in Mathematics and Its Applications, 11 (Springer-Verlag, 1988). Zbl0698.00039MR922953
- YOUNG, L. C., A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comp. Methods in Applied Mech. and Engineering, 47 (1984), 3-46. Zbl0545.76124
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.