Anisotropic mesh adaption: application to computational fluid dynamics

Simona Perotto

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 1, page 145-165
  • ISSN: 0392-4041

Abstract

top
In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in 2 D . Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.

How to cite

top

Perotto, Simona. "Anisotropic mesh adaption: application to computational fluid dynamics." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 145-165. <http://eudml.org/doc/195733>.

@article{Perotto2005,
abstract = {In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in $2D$. Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.},
author = {Perotto, Simona},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {145-165},
publisher = {Unione Matematica Italiana},
title = {Anisotropic mesh adaption: application to computational fluid dynamics},
url = {http://eudml.org/doc/195733},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Perotto, Simona
TI - Anisotropic mesh adaption: application to computational fluid dynamics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 145
EP - 165
AB - In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in $2D$. Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.
LA - eng
UR - http://eudml.org/doc/195733
ER -

References

top
  1. AINSWORTH, M. - ODEN, J. T., A posteriori error estimation in finite element analysis, John Wiley & Sons, Inc., New-York, 2000. Zbl1008.65076MR1885308
  2. ALMEIDA, R. C. - FEIJÓO, R. A. - GALEÃO, A. C. - PADRA, C. - SILVA, R. S., Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. Methods Appl. Mech. Engrg., 182 (2000), 379-400. Zbl0986.76035MR1744255
  3. APEL, T., Anisotropic finite elements: local estimates and applications, Book Series: Advances in Numerical Mathematics, Teubner, Stuttgart, 1999. Zbl0934.65121MR1716824
  4. APEL, T. - LUBE, G., Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), 261-282. Zbl0878.65097MR1408603
  5. BABUŠKA, I. - RHEINBOLDT, W., A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12 (1978), 1597-1615. Zbl0396.65068
  6. BANK, R. E. - WEISER, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, no. 170 (1985), 283-301. Zbl0569.65079MR777265
  7. BECKER, R. - RANNACHER, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. Zbl1105.65349MR2009692
  8. BREZZI, F. - RUSSO, A., Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), 571-587. Zbl0819.65128MR1291139
  9. BROOKS, A. N. - HUGHES, T. J. R., Streamline upwind / Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259. Zbl0497.76041MR679322
  10. CIARLET, PH., The finite element method for elliptic problems, North-Holland Publishing Company, Amsterdam, 1978. Zbl0511.65078MR520174
  11. CLÉMENT, PH., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84. Zbl0368.65008MR400739
  12. DARMOFAL, D. L. - VENDITTI, D. A., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187 (2003) 22-46. Zbl1047.76541
  13. D’AZEVEDO, E. F. - SIMPSON, R. B., On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59 (1991), 321-348. Zbl0724.65006MR1113194
  14. DOUGLAS, J. - WANG, J., An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52 (1989), 495-508. Zbl0669.76051MR958871
  15. ERIKSSON, K. - JOHNSON, C., Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), 167-188. Zbl0795.65074MR1149289
  16. ERIKSSON, K. - ESTEP, D. - HANSBO, P. - JOHNSON, C., Introduction to adaptive methods for differential equations, Acta Numerica, (1995), 105-158. Zbl0829.65122MR1352472
  17. FORMAGGIA, L. - PEROTTO, S., New anisotropic a priori error estimates, Numer. Math., 89 (2001), 641-667. Zbl0990.65125MR1865506
  18. FORMAGGIA, L. - PEROTTO, S., Anisotropic error estimates for elliptic problems, Numer. Math., 94 (2003), 67-92. Zbl1031.65123MR1971213
  19. FORMAGGIA, L. - MICHELETTI, S. - PEROTTO, S., Anisotropic mesh adaptation in Computational Fluid Dynamics: application to the advection-diffusion-reaction and the Stokes problems, to appear in Appl. Num. Math. (2004). Zbl1107.65098MR2101976
  20. FORMAGGIA, L. - PEROTTO, S. - ZUNINO, P., An anisotropic a-posteriori error estimate for a convection-diffusion problem, Comput. Visual. Sci., 4 (2001), 99-104. Zbl1009.76051MR1946990
  21. FRANCA, L. P. - HUGHES, T. J. R., Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105 (1993), 285-298. Zbl0771.76037MR1220082
  22. FRANCA, L. - STENBERG, R., Error analysis of some GLS methods for elasticity equations, SIAM J. Numer. Anal., 28 (1991), 1680-1697. Zbl0759.73055MR1135761
  23. COURTY, F. - LESERVOISIER, D. - GEORGE, P. L. - DERVIEUX, A., Continuous metrics and mesh optimization, submitted for the publication in Appl. Numer. Math., (2003). 
  24. GEORGE, P. L. - BOROUCHAKI, H., Delaunay triangulation and meshing-application to finite element, Editions Hermes, Paris, 1998. Zbl0908.65143MR1686530
  25. GILES, M. B. - SÜLI, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numerica, 11 (2002), 145-236. Zbl1105.65350MR2009374
  26. HABASHI, W. G. - FORTIN, M. - DOMPIERRE, J. - VALLET, M. G. - BOURGAULT, Y., Anisotropic mesh adaptation: a step towards a mesh-independent and user-independent CFD, in Barriers and Challenges in Computational Fluid Dynamics, Kluwer Acad. Publ., 1998, 99-117. Zbl0940.76034MR1607369
  27. HECHT, F., BAMG: bidimensional anisotropic mesh generator, (1998). http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm 
  28. HUGHES, T. J. R. - FRANCA, L. - BALESTRA, M., A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99. Zbl0622.76077MR868143
  29. HUGHES, T. J. R. - FRANCA, L. P. - HULBERT, G. M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), 173-189. Zbl0697.76100MR1002621
  30. KUNERT, G., A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes, Ph.D. thesis, Fakultät für Mathematik der Technischen Universität Chemnitz, Chemnitz, 1999. Zbl0919.65066
  31. LIONS, J. L. - MAGENES, E., Non-homogeneous boundary value problem and application, Volume I. Springer-Verlag, Berlin, 1972. Zbl0223.35039MR350177
  32. MICHELETTI, S. - PEROTTO, S. - PICASSO, M., Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and Stokes problems, SIAM J. Numer. Anal., 41, no. 3 (2003), 1131-1162. Zbl1053.65089MR2005198
  33. MITTAL, S., On the performance of high aspect ratio elements for incompressible flows, Comput. Methods Appl. Mech. Engrg., 188 (2000), 269-287. Zbl0981.76056
  34. ODEN, J. T. - PRUDHOMME, S., Goal-oriented error estimation and adaptivity for the finite element method, Computers Math. Applic., 41, no. 5-6 (2001), 735-756. Zbl0987.65110MR1822600
  35. PICASSO, M., An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24, no. 4 (2003), 1328-1355. Zbl1061.65116MR1976219
  36. SCOTT, L. R. - ZHANG, S., Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493. Zbl0696.65007MR1011446
  37. SIEBERT, K. G., An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), 373-398. Zbl0873.65098MR1389492
  38. VERFÜrth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, B. G. Teubner, Stuttgart, 1996. Zbl0853.65108
  39. ZIENKIEWICZ, O. C. - ZHU, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24 (1987), 337-357. Zbl0602.73063MR875306
  40. ZIENKIEWICZ, O. C. - ZHU, J. Z., The superconvergent patch recovery and a posteriori error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Eng., 33 (1992), 1331-1364. Zbl0769.73084MR1161557
  41. ZIENKIEWICZ, O. C. - ZHU, J. Z., The superconvergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity, Int. J. Numer. Methods Eng., 33 (1992), 1365-1382. Zbl0769.73085MR1161558

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.