Anisotropic mesh adaption: application to computational fluid dynamics
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 1, page 145-165
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topPerotto, Simona. "Anisotropic mesh adaption: application to computational fluid dynamics." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 145-165. <http://eudml.org/doc/195733>.
@article{Perotto2005,
abstract = {In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in $2D$. Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.},
author = {Perotto, Simona},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {145-165},
publisher = {Unione Matematica Italiana},
title = {Anisotropic mesh adaption: application to computational fluid dynamics},
url = {http://eudml.org/doc/195733},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Perotto, Simona
TI - Anisotropic mesh adaption: application to computational fluid dynamics
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 145
EP - 165
AB - In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in $2D$. Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.
LA - eng
UR - http://eudml.org/doc/195733
ER -
References
top- AINSWORTH, M. - ODEN, J. T., A posteriori error estimation in finite element analysis, John Wiley & Sons, Inc., New-York, 2000. Zbl1008.65076MR1885308
- ALMEIDA, R. C. - FEIJÓO, R. A. - GALEÃO, A. C. - PADRA, C. - SILVA, R. S., Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. Methods Appl. Mech. Engrg., 182 (2000), 379-400. Zbl0986.76035MR1744255
- APEL, T., Anisotropic finite elements: local estimates and applications, Book Series: Advances in Numerical Mathematics, Teubner, Stuttgart, 1999. Zbl0934.65121MR1716824
- APEL, T. - LUBE, G., Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), 261-282. Zbl0878.65097MR1408603
- BABUŠKA, I. - RHEINBOLDT, W., A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12 (1978), 1597-1615. Zbl0396.65068
- BANK, R. E. - WEISER, A., Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, no. 170 (1985), 283-301. Zbl0569.65079MR777265
- BECKER, R. - RANNACHER, R., An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. Zbl1105.65349MR2009692
- BREZZI, F. - RUSSO, A., Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), 571-587. Zbl0819.65128MR1291139
- BROOKS, A. N. - HUGHES, T. J. R., Streamline upwind / Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259. Zbl0497.76041MR679322
- CIARLET, PH., The finite element method for elliptic problems, North-Holland Publishing Company, Amsterdam, 1978. Zbl0511.65078MR520174
- CLÉMENT, PH., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84. Zbl0368.65008MR400739
- DARMOFAL, D. L. - VENDITTI, D. A., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187 (2003) 22-46. Zbl1047.76541
- DAZEVEDO, E. F. - SIMPSON, R. B., On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59 (1991), 321-348. Zbl0724.65006MR1113194
- DOUGLAS, J. - WANG, J., An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52 (1989), 495-508. Zbl0669.76051MR958871
- ERIKSSON, K. - JOHNSON, C., Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), 167-188. Zbl0795.65074MR1149289
- ERIKSSON, K. - ESTEP, D. - HANSBO, P. - JOHNSON, C., Introduction to adaptive methods for differential equations, Acta Numerica, (1995), 105-158. Zbl0829.65122MR1352472
- FORMAGGIA, L. - PEROTTO, S., New anisotropic a priori error estimates, Numer. Math., 89 (2001), 641-667. Zbl0990.65125MR1865506
- FORMAGGIA, L. - PEROTTO, S., Anisotropic error estimates for elliptic problems, Numer. Math., 94 (2003), 67-92. Zbl1031.65123MR1971213
- FORMAGGIA, L. - MICHELETTI, S. - PEROTTO, S., Anisotropic mesh adaptation in Computational Fluid Dynamics: application to the advection-diffusion-reaction and the Stokes problems, to appear in Appl. Num. Math. (2004). Zbl1107.65098MR2101976
- FORMAGGIA, L. - PEROTTO, S. - ZUNINO, P., An anisotropic a-posteriori error estimate for a convection-diffusion problem, Comput. Visual. Sci., 4 (2001), 99-104. Zbl1009.76051MR1946990
- FRANCA, L. P. - HUGHES, T. J. R., Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105 (1993), 285-298. Zbl0771.76037MR1220082
- FRANCA, L. - STENBERG, R., Error analysis of some GLS methods for elasticity equations, SIAM J. Numer. Anal., 28 (1991), 1680-1697. Zbl0759.73055MR1135761
- COURTY, F. - LESERVOISIER, D. - GEORGE, P. L. - DERVIEUX, A., Continuous metrics and mesh optimization, submitted for the publication in Appl. Numer. Math., (2003).
- GEORGE, P. L. - BOROUCHAKI, H., Delaunay triangulation and meshing-application to finite element, Editions Hermes, Paris, 1998. Zbl0908.65143MR1686530
- GILES, M. B. - SÜLI, E., Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numerica, 11 (2002), 145-236. Zbl1105.65350MR2009374
- HABASHI, W. G. - FORTIN, M. - DOMPIERRE, J. - VALLET, M. G. - BOURGAULT, Y., Anisotropic mesh adaptation: a step towards a mesh-independent and user-independent CFD, in Barriers and Challenges in Computational Fluid Dynamics, Kluwer Acad. Publ., 1998, 99-117. Zbl0940.76034MR1607369
- HECHT, F., BAMG: bidimensional anisotropic mesh generator, (1998). http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm
- HUGHES, T. J. R. - FRANCA, L. - BALESTRA, M., A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99. Zbl0622.76077MR868143
- HUGHES, T. J. R. - FRANCA, L. P. - HULBERT, G. M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), 173-189. Zbl0697.76100MR1002621
- KUNERT, G., A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes, Ph.D. thesis, Fakultät für Mathematik der Technischen Universität Chemnitz, Chemnitz, 1999. Zbl0919.65066
- LIONS, J. L. - MAGENES, E., Non-homogeneous boundary value problem and application, Volume I. Springer-Verlag, Berlin, 1972. Zbl0223.35039MR350177
- MICHELETTI, S. - PEROTTO, S. - PICASSO, M., Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and Stokes problems, SIAM J. Numer. Anal., 41, no. 3 (2003), 1131-1162. Zbl1053.65089MR2005198
- MITTAL, S., On the performance of high aspect ratio elements for incompressible flows, Comput. Methods Appl. Mech. Engrg., 188 (2000), 269-287. Zbl0981.76056
- ODEN, J. T. - PRUDHOMME, S., Goal-oriented error estimation and adaptivity for the finite element method, Computers Math. Applic., 41, no. 5-6 (2001), 735-756. Zbl0987.65110MR1822600
- PICASSO, M., An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24, no. 4 (2003), 1328-1355. Zbl1061.65116MR1976219
- SCOTT, L. R. - ZHANG, S., Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493. Zbl0696.65007MR1011446
- SIEBERT, K. G., An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), 373-398. Zbl0873.65098MR1389492
- VERFÜrth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, B. G. Teubner, Stuttgart, 1996. Zbl0853.65108
- ZIENKIEWICZ, O. C. - ZHU, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24 (1987), 337-357. Zbl0602.73063MR875306
- ZIENKIEWICZ, O. C. - ZHU, J. Z., The superconvergent patch recovery and a posteriori error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Eng., 33 (1992), 1331-1364. Zbl0769.73084MR1161557
- ZIENKIEWICZ, O. C. - ZHU, J. Z., The superconvergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity, Int. J. Numer. Methods Eng., 33 (1992), 1365-1382. Zbl0769.73085MR1161558
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.