A note on global Nash subvarieties and Artin-Mazur theorem
Alessandro Tancredi; Alberto Tognoli
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-B, Issue: 2, page 425-431
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topTancredi, Alessandro, and Tognoli, Alberto. "A note on global Nash subvarieties and Artin-Mazur theorem." Bollettino dell'Unione Matematica Italiana 7-B.2 (2004): 425-431. <http://eudml.org/doc/195834>.
@article{Tancredi2004,
abstract = {It is shown that every connected global Nash subvariety of $\mathbb\{R\}^\{n\}$ is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.},
author = {Tancredi, Alessandro, Tognoli, Alberto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {425-431},
publisher = {Unione Matematica Italiana},
title = {A note on global Nash subvarieties and Artin-Mazur theorem},
url = {http://eudml.org/doc/195834},
volume = {7-B},
year = {2004},
}
TY - JOUR
AU - Tancredi, Alessandro
AU - Tognoli, Alberto
TI - A note on global Nash subvarieties and Artin-Mazur theorem
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/6//
PB - Unione Matematica Italiana
VL - 7-B
IS - 2
SP - 425
EP - 431
AB - It is shown that every connected global Nash subvariety of $\mathbb{R}^{n}$ is Nash isomorphic to a connected component of an algebraic variety that, in the compact case, can be chosen with only two connected components arbitrarily near each other. Some examples which state the limits of the given results and of the used tools are provided.
LA - eng
UR - http://eudml.org/doc/195834
ER -
References
top- AKBULUT, S.- KING, H., Topology of real algebraic sets, Maht. Sci. Research Institute Publ.25, Springer, Berlin (1992). Zbl0808.14045MR1225577
- BOCHNACK, J.- COSTE, M.- ROY, M. F., Real algebraic geometry, Springer, Berlin, 1998. Zbl0912.14023MR1659509
- COSTE, M.- RUIZ, R.- SHIOTA, M., Approximation in Nash manifolds, Amer. J. Math., 117 (1995), 905-927. Zbl0873.32007MR1342835
- COSTE, M.- SHIOTA, M., Nash functions on noncompact Nash manifolds, Ann. Scient. Éc. Norm. Sup., 33 (2000), 139-149. Zbl0981.14027MR1743722
- ENCINAS, S.- VILLAMAYOR, O., A new theorem of desingularization over fields of characteristic zero, Preprint arXiv:math.AG/0101208
- NARDELLI, G.- TANCREDI, A., A note on the extension of analytic functions off real analytic subsets, Revista Matemática de la Universidad Complutense de Madrid, 9 (1996), 85-99. Zbl0879.32013MR1413268
- TANCREDI, A.- TOGNOLI, A., On the extension of Nash functions, Math. Ann.288 (1990), 595-604. Zbl0699.32006MR1081265
- TANCREDI, A.- TOGNOLI, A., Some remarks on the classification of complex Nash vector bundles, Bull. Sci. math., 17 (1993), 177-183. Zbl0798.32010MR1216006
- TANCREDI, A.- TOGNOLI, A., On the algebraic approximation of Nash maps, Ann. Univ. Ferrara, 38 (1992), 107-115. Zbl0858.14028MR1261965
- TOGNOLI, A., Algebraic approximation of manifolds and spaces, Sém. Bourbaki, 548 (1979/80). Zbl0456.57012
- WALLACE, A. H., Algebraic approximation of manifolds, Proc. London Math. Soc. (3), 7 (1957), 196-210. Zbl0081.37802MR87205
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.