Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 2, page 489-507
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topEchi, Othman. "Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces." Bollettino dell'Unione Matematica Italiana 6-B.2 (2003): 489-507. <http://eudml.org/doc/196084>.
@article{Echi2003,
abstract = {In this paper, we deal with the study of quasi-homeomorphisms, the Goldman prime spectrum and the Jacobson prime spectrum of a commutative ring. We prove that, if $g \colon Y \to X$ is a quasi-homeomorphism, $Z$ a sober space and $f \colon Y \to Z$ a continuous map, then there exists a unique continuous map $F \colon X \to Z$ such that $F \circ g =f$. Let $X$ be a $T_\{0\}$-space, $q \colon X \to^\{s\} X$ the injection of $X$ onto its sobrification $^\{s\}X$. It is shown, here, that $q(\text\{Gold\}(X))=\text\{Gold\}(\sideset\{^\{s\}\}\{\}\{\operatorname\{X\}\})$, where $\text\{Gold\}(X)$ is the set of all locally closed points of $X$. Some applications are also indicated. The Jacobson prime spectrum of a commutative ring $R$ is the set of all prime ideals of $R$ which are intersections of some maximal ideals of $R$. One of our main results is a surprising answer to the problem of ordered disjoint union of jacspectral sets (ordered sets which are isomorphic to the Jacobson prime spectrum of some ring): Let $\\{(X_\{\lambda\}, \leq_\{\lambda\}) \, : \, \lambda\in\Lambda \\}$ be a collection of ordered disjoint sets and $X=\bigcup_\{\lambda\in\Lambda\} X_\{\lambda\}$. Partially order $X$ by declaring $x\leq y$ to mean that there exists $\lambda\in\Lambda$ such that $x$, $y\in X_\{\lambda\}$ and $x\leq_\{\lambda\} y$. Then the following statements are equivalent: (i) $(X, \leq)$ is jacspectral. (ii) $(X_\{\lambda\}, \leq_\{\lambda\})$ is jacspectral, for each $\lambda\in\Lambda$.},
author = {Echi, Othman},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {489-507},
publisher = {Unione Matematica Italiana},
title = {Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces},
url = {http://eudml.org/doc/196084},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Echi, Othman
TI - Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/6//
PB - Unione Matematica Italiana
VL - 6-B
IS - 2
SP - 489
EP - 507
AB - In this paper, we deal with the study of quasi-homeomorphisms, the Goldman prime spectrum and the Jacobson prime spectrum of a commutative ring. We prove that, if $g \colon Y \to X$ is a quasi-homeomorphism, $Z$ a sober space and $f \colon Y \to Z$ a continuous map, then there exists a unique continuous map $F \colon X \to Z$ such that $F \circ g =f$. Let $X$ be a $T_{0}$-space, $q \colon X \to^{s} X$ the injection of $X$ onto its sobrification $^{s}X$. It is shown, here, that $q(\text{Gold}(X))=\text{Gold}(\sideset{^{s}}{}{\operatorname{X}})$, where $\text{Gold}(X)$ is the set of all locally closed points of $X$. Some applications are also indicated. The Jacobson prime spectrum of a commutative ring $R$ is the set of all prime ideals of $R$ which are intersections of some maximal ideals of $R$. One of our main results is a surprising answer to the problem of ordered disjoint union of jacspectral sets (ordered sets which are isomorphic to the Jacobson prime spectrum of some ring): Let $\{(X_{\lambda}, \leq_{\lambda}) \, : \, \lambda\in\Lambda \}$ be a collection of ordered disjoint sets and $X=\bigcup_{\lambda\in\Lambda} X_{\lambda}$. Partially order $X$ by declaring $x\leq y$ to mean that there exists $\lambda\in\Lambda$ such that $x$, $y\in X_{\lambda}$ and $x\leq_{\lambda} y$. Then the following statements are equivalent: (i) $(X, \leq)$ is jacspectral. (ii) $(X_{\lambda}, \leq_{\lambda})$ is jacspectral, for each $\lambda\in\Lambda$.
LA - eng
UR - http://eudml.org/doc/196084
ER -
References
top- ARTIN, E.- TATE, J. T., A note on finite ring extension, J. Math. Soc. Japan, 3 (1951), 74-77. Zbl0043.26701MR44509
- AULL, C. E.- THRON, W. J., Separation axioms between and , Indag. Math., 24 (1962), 26-37. Zbl0108.35402MR138082
- BOUACIDA, E.- ECHI, O.- SALHI, E., Topologies associées à une relation binaire et relation binaire spectrale, Boll. Un. Mat. Ital. (7), 10-B (1996), 417-439. Zbl0865.54032MR1397356
- BOUACIDA, E.- ECHI, O.- SALHI, E., Foliations, spectral topology and special morphisms, Lect. Notes Pure Appl. Math. (Dekker), 205 (1999), 111-132. Zbl0957.57017MR1767454
- BOUACIDA, E.- ECHI, O.- SALHI, E., Feuilletages et topologie spectrale, J. Math. Soc. Japan, 52 (2000), 447-464. Zbl0965.57025MR1742794
- BOUACIDA, E.- ECHI, O.- SALHI, E., Goldman points and Goldman topology, Submitted for publication.
- BOUVIER, A.- FONTANA, M., Une classe d'espaces spectraux de dimension : les espaces principaux, Bull. Sc. Math. 2e série, 105 (1981), 159-167. Zbl0459.13001MR618875
- CONTE, A., Proprietà di separazione della topologia di Zariski di uno schema, Ist. Lombardo Accad. Sci. Lett. Rend., Ser. A, 106 (1972), 79-111. Zbl0254.14002MR349670
- DOBBS, D. E.- FONTANA, M.- PAPICK, I. J., On certain distinguished spectral sets, Ann. Mat. Pura Appl. (4), 128 (1980), 227-240. Zbl0472.54021MR640784
- ECHI, O., A topological characterization of the Goldman prime spectrum of commutative ring, Comm. Algebra, 28 (5) (2000), 2329-2337. Zbl0976.13014MR1757465
- FONTANA, M., Quelques nouveaux résultats sur une classe d'espaces spectraux, Rend. Acad. Naz. Lincei, Serie, VIII, 67 (1979), 157-161. Zbl0461.13002MR622786
- FONTANA, M.- MAROSCIA, P., Sur les anneaux de Goldman, Boll. Un. Mat. Ital., 13-B (1976), 743-759. Zbl0351.13002MR463154
- GROTHENDIECK, A.- DIEUDONNE, J., Eléments de géométrie algébrique, Springer Verlag (1971). Zbl0203.23301
- GOLDMAN, O., Hilbert rings and the Hilbert Nullstallensatz, Math. Z., 54 (1951), 136-140. Zbl0042.26401MR44510
- HOCHSTER, M., Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43-60. Zbl0184.29401MR251026
- HOCHSTER, M., The minimal prime spectrum of a commutative ring, Canad. J. Math., 23 (1971), 749-758. Zbl0216.19304MR292805
- JOYAL, A., Spectral spaces and distributive lattices, Notices Amer. Math. Soc., 18 (1971), 393-394.
- JOYAL, A., Spectral spaces II, Notices Amer. Math. Soc., 18 (1971), 618.
- KAPLANSKY, I., Commutative rings (revised edition), The University of Chicago Press, Chicago (1974). Zbl0296.13001MR345945
- KRULL, W., Jacobsonsche Ring, Hilbertscher Nullstellensatz Dimensionnentheorie, Math. Z., 54 (1951), 354-387. Zbl0043.03802MR47622
- LEWIS, W. J., The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), 419-434. Zbl0266.13010MR314811
- LEWIS, W. J.- OHM, J., The ordering of , Canad. J. Math., 28 (1976), 820-835. Zbl0313.13003MR409428
- PICAVET, G., Sur les anneaux commutatifs dont tout idéal premier est de Goldman, C. R. Acad. Sci. Paris Sér A, 280 (1975), 1719-1721. Zbl0328.13001MR469900
- PICAVET, G., Autour des idéaux premiers de Goldman d'un anneau commutatif, Ann. Sc. Univ. Clermont Math., 57 (1975), 73-90. Zbl0317.13002MR392967
- PRIESTLEY, H. A., Spectral sets, J. Pure. Appl. Algebra, 94 (1994), 101-114. Zbl0807.06001MR1277526
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.