Generating methods for principal topologies on bounded lattices

Funda Karaçal; Ümit Ertuğrul; M. Nesibe Kesicioğlu

Kybernetika (2021)

  • Volume: 57, Issue: 4, page 714-736
  • ISSN: 0023-5954

Abstract

top
In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.

How to cite

top

Karaçal, Funda, Ertuğrul, Ümit, and Kesicioğlu, M. Nesibe. "Generating methods for principal topologies on bounded lattices." Kybernetika 57.4 (2021): 714-736. <http://eudml.org/doc/297906>.

@article{Karaçal2021,
abstract = {In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.},
author = {Karaçal, Funda, Ertuğrul, Ümit, Kesicioğlu, M. Nesibe},
journal = {Kybernetika},
keywords = {principal topology; bounded lattice; generating method; uninorm; triangular norm},
language = {eng},
number = {4},
pages = {714-736},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generating methods for principal topologies on bounded lattices},
url = {http://eudml.org/doc/297906},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Karaçal, Funda
AU - Ertuğrul, Ümit
AU - Kesicioğlu, M. Nesibe
TI - Generating methods for principal topologies on bounded lattices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 4
SP - 714
EP - 736
AB - In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.
LA - eng
KW - principal topology; bounded lattice; generating method; uninorm; triangular norm
UR - http://eudml.org/doc/297906
ER -

References

top
  1. Alexandroff, P., Diskrete Räume., Mat. Sb. (N.S.) 2 (1937), 501-518. 
  2. Birkhoff, G., Lattice Theory., American Mathematical Society, New York 1948. Zbl0537.06001
  3. Chen, X., Cores of Alexandroff spaces. 
  4. Çaylı, G. D., Ertuğrul, Ü., Köroğlu, T., Karaçal, F., , Kybernetika 53 (2017), 911-921. DOI
  5. Dahane, I., Lazaar, S., Richmond, T., Turki, T., , Quaestiones Mathematicae (2018), 15-35. DOI
  6. Dixmier, J., General Topology., Springer-Verlag, 1984. 
  7. Echi, O., Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces., Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2003), 489-507. 
  8. Echi, O., , Topol. Appl. 159 (2012), 2357-2366. DOI
  9. Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F., , Inform. Sci. 330 (2016), 315-327. DOI
  10. Ertuğrul, Ü., Karaçal, F., Mesiar, R., , Int. J. Intell. Systems 30 (2015), 807-817. DOI
  11. Fodor, J., Yager, R., Rybalov, A., 10.1142/S0218488597000312, Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. Zbl1232.03015DOI10.1142/S0218488597000312
  12. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E., Aggregation Functions., Cambridge University Press, 2009. Zbl1206.68299MR2538324
  13. Karaçal, F., Köroğlu, T., An Alexandroff Topology Obtained from Uninorms., Submitted (2019). 
  14. Karaçal, F., Mesiar, R., , Fuzzy Sets and Systems 261 (2015), 33-43. DOI
  15. Katsevich, A., Mikusiński, P., Order of spaces of pseudoquotients., Top. Proc. 44 (2014), 21-31. 
  16. Kelley, J. L., General Topology., Springer, New York 1975. 
  17. Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F., , Kybernetika 55 (2019), 3, 518-530. DOI
  18. Lai, H., Zhang, D., , Fuzzy Sets Systems 157 (2006), 14, 1865-1885. DOI
  19. Lazaar, S., Richmond, T., Houssem, S., , Comm. Algebra (2019). DOI
  20. Lazaar, S., Richmond, T., Turki, T., , Quaest. Math. 40 (2017), 17-28. DOI
  21. Ma, Z., Wu, W. M., , Information Sciences 55 (1991), 77-97. Zbl0741.03010DOI
  22. Steiner, A. K., 10.1090/S0002-9947-1966-0190893-2, Trans. Amer. Math. Soc. 122 (1969), 379-398. DOI10.1090/S0002-9947-1966-0190893-2
  23. Walden, P., Effective topology from spacetime tomography., J. Physics: Conference Series 68 (2007), 12-28. 
  24. Yager, R. R., Rybalov, A., , Fuzzy Sets Systems 80 (1996), 111-120. Zbl0871.04007DOI
  25. Zhang, H.-P., Pérez.-Fernández, R., Baets, B. De, , Topol. Appl. 258 (2019), 100-114. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.