Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata

Luigi Ambrosio

Bollettino dell'Unione Matematica Italiana (2004)

  • Volume: 7-B, Issue: 3, page 529-543
  • ISSN: 0392-4041

Abstract

top
In this talk I will illustrate some recent progress on the uniqueness problem for the transport equation and the ordinary differential equation associated to a weakly differentiable vector field. An application to a system of conservation laws will also be illustrated.

How to cite

top

Ambrosio, Luigi. "Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata." Bollettino dell'Unione Matematica Italiana 7-B.3 (2004): 529-543. <http://eudml.org/doc/196130>.

@article{Ambrosio2004,
abstract = {In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.},
author = {Ambrosio, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {10},
number = {3},
pages = {529-543},
publisher = {Unione Matematica Italiana},
title = {Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata},
url = {http://eudml.org/doc/196130},
volume = {7-B},
year = {2004},
}

TY - JOUR
AU - Ambrosio, Luigi
TI - Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/10//
PB - Unione Matematica Italiana
VL - 7-B
IS - 3
SP - 529
EP - 543
AB - In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.
LA - ita
UR - http://eudml.org/doc/196130
ER -

References

top
  1. AIZENMAN, M., On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. Math., 107 (1978), 287-296. Zbl0394.28012MR482853
  2. ALBERTI, G., Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274. Zbl0791.26008MR1215412
  3. ALBERTI, G.- AMBROSIO, L., A geometric approach to monotone functions in R n , Math. Z., 230 (1999), 259-316. Zbl0934.49025MR1676726
  4. ALMGREN, F. J., The theory of varifolds - A variational calculus in the large, Princeton University Press, 1972. 
  5. AMBROSIO, L.- FUSCO, N.- PALLARA, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
  6. AMBROSIO, L., Transport equation and Cauchy problem for BV vector fields, In corso di stampa su Inventiones Math.. Zbl1075.35087
  7. AMBROSIO, L.- DE LELLIS, C., Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, International Mathematical Research Notices, 41 (2003), 2205-2220. Zbl1061.35048MR2000967
  8. AMBROSIO, L.- BOUCHUT, F.- DE LELLIS, C., Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Di prossima pubblicazione su Comm. PDE, disponibile su http://cvgmt.sns.it. Zbl1072.35116
  9. AMBROSIO, L.- GIGLI, N.- SAVARÉ, G., Gradient flows in metric spaces and in the Wasserstein space of probability measures, Libro di prossima pubblicazione a cura di Birkhäuser. 
  10. BOUCHUT, F.- JAMES, F., One dimensional transport equation with discontinuous coefficients, Nonlinear Analysis, 32 (1998), 891-933. Zbl0989.35130MR1618393
  11. BOUCHUT, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90. Zbl0979.35032MR1822415
  12. BRESSAN, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. Zbl1114.35123MR2033003
  13. CAPUZZO DOLCETTA, I.- PERTHAME, B., On some analogy between different approaches to first order PDE's with nonsmooth coefficients, Adv. Math. Sci Appl., 6 (1996), 689-703. Zbl0865.35032MR1411988
  14. CELLINA, A., On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis, TMA, 25 (1995), 899-903. Zbl0837.34023MR1350714
  15. CELLINA, A.- VORNICESCU, M., On gradient flows, Journal of Differential Equations, 145 (1998), 489-501. Zbl0927.37007MR1620979
  16. COLOMBINI, F.- LERNER, N., Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002), 357-384. Zbl1017.35029MR1882138
  17. COLOMBINI, F.- LERNER, N., Uniqueness of L solutions for a class of conormal BV vector fields, Preprint, 2003. MR2126467
  18. COLOMBINI, F.- LUO, T.- RAUCH, J., Uniqueness and nonuniqueness for nonsmooth divergence-free transport, Preprint, 2003. Zbl1065.35089MR2030717
  19. DAFERMOS, C., Hyperbolic conservation laws in continuum physics, Springer Verlag, 2000. Zbl0940.35002MR1763936
  20. DE PAUW, N., Non unicité des solutions bornées pour un champ de vecteurs B V en dehors d'un hyperplan, C. R. Math. Sci. Acad. Paris, 337 (2003), 249-252. Zbl1024.35029MR2009116
  21. DI PERNA, R. J.- LIONS, P. L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. Zbl0696.34049MR1022305
  22. HAURAY, M., On Liouville transport equation with potential in B V loc , (2003) Di prossima pubblicazione su Comm. in PDE. 
  23. HAURAY, M., On two-dimensional Hamiltonian transport equations with L loc p coefficients, (2003) Di prossima pubblicazione su Ann. Nonlinear Analysis IHP. Zbl1028.35148
  24. KANTOROVICH, L. V., On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), 227-229. 
  25. KEYFITZ, B. L.- KRANZER, H. C., A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), 219- 241. Zbl0434.73019MR549642
  26. LIONS, P. L., Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833-838. Zbl0919.34028MR1648524
  27. PETROVA, G.- POPOV, B., Linear transport equation with discontinuous coefficients, Comm. PDE, 24 (1999), 1849-1873. Zbl0992.35104MR1708110
  28. POUPAUD, F.- RASCLE, M., Measure solutions to the liner multidimensional transport equation with non-smooth coefficients, Comm. PDE, 22 (1997), 337-358. Zbl0882.35026MR1434148
  29. YOUNG, L. C., Lectures on the calculus of variations and optimal control theory, Saunders, 1969. Zbl0177.37801MR259704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.