Existence and decay in non linear viscoelasticity
Jaime E. Muñoz Rivera; Félix P. Quispe Gómez
Bollettino dell'Unione Matematica Italiana (2003)
- Volume: 6-B, Issue: 1, page 1-37
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMuñoz Rivera, Jaime E., and Quispe Gómez, Félix P.. "Existence and decay in non linear viscoelasticity." Bollettino dell'Unione Matematica Italiana 6-B.1 (2003): 1-37. <http://eudml.org/doc/196152>.
@article{MuñozRivera2003,
abstract = {In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space $H$given by \begin\{gather*\} u\_\{tt\} + M([u]) Au - \int \_\{0\}^\{t\} g(t-\tau ) N([u]) Au \, d\tau = 0, \quad \text\{ in \} L^\{2\}(0, T; H) \\ u(0)=u\_\{0\}, \quad u\_\{t\}(0)=u\_\{1\} \end\{gather*\}
where by$[u(t)]$we are denoting \begin\{equation*\} [u(t)]= \left( ( u(t), u\_\{t\}(t), (Au(t), u\_\{t\}(t)), \Vert A^\{\frac\{1\}\{2\}\} u(t) \Vert ^\{2\}, \Vert A^\{\frac\{1\}\{2\}\} u\_\{t\}(t) \Vert ^\{2\}, \Vert A u(t) \Vert ^\{2\} \right) \in \mathbb \{R\}^\{5\} \end\{equation*\}$A \colon D(A) \subset H \to H$ is a nonnegative, self-adjoint operator, $M$, $N \colon \mathbb\{R\}^\{5\} \to \mathbb\{R\}$ are $C^\{2\}$- functions and $g \colon \mathbb\{R\} \to \mathbb\{R\}$ is a $C^\{3\}$-function with appropriates conditions. We show that there exists global solution in time for small initial data. When $[u(t)]= \| A^\{\frac\{1\}\{2\}\} u\|^\{2\}$ and $N=1$, we show the global existence for large initial data $(u_\{0\}, u_\{1\})$ taken in the space $D(A) \times D(A^\{1/2\})$ provided they are close enough to Gevrey data. Uniform rate of decay is also proved.},
author = {Muñoz Rivera, Jaime E., Quispe Gómez, Félix P.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-37},
publisher = {Unione Matematica Italiana},
title = {Existence and decay in non linear viscoelasticity},
url = {http://eudml.org/doc/196152},
volume = {6-B},
year = {2003},
}
TY - JOUR
AU - Muñoz Rivera, Jaime E.
AU - Quispe Gómez, Félix P.
TI - Existence and decay in non linear viscoelasticity
JO - Bollettino dell'Unione Matematica Italiana
DA - 2003/2//
PB - Unione Matematica Italiana
VL - 6-B
IS - 1
SP - 1
EP - 37
AB - In this work we study the existence, uniqueness and decay of solutions to a class of viscoelastic equations in a separable Hilbert space $H$given by \begin{gather*} u_{tt} + M([u]) Au - \int _{0}^{t} g(t-\tau ) N([u]) Au \, d\tau = 0, \quad \text{ in } L^{2}(0, T; H) \\ u(0)=u_{0}, \quad u_{t}(0)=u_{1} \end{gather*}
where by$[u(t)]$we are denoting \begin{equation*} [u(t)]= \left( ( u(t), u_{t}(t), (Au(t), u_{t}(t)), \Vert A^{\frac{1}{2}} u(t) \Vert ^{2}, \Vert A^{\frac{1}{2}} u_{t}(t) \Vert ^{2}, \Vert A u(t) \Vert ^{2} \right) \in \mathbb {R}^{5} \end{equation*}$A \colon D(A) \subset H \to H$ is a nonnegative, self-adjoint operator, $M$, $N \colon \mathbb{R}^{5} \to \mathbb{R}$ are $C^{2}$- functions and $g \colon \mathbb{R} \to \mathbb{R}$ is a $C^{3}$-function with appropriates conditions. We show that there exists global solution in time for small initial data. When $[u(t)]= \| A^{\frac{1}{2}} u\|^{2}$ and $N=1$, we show the global existence for large initial data $(u_{0}, u_{1})$ taken in the space $D(A) \times D(A^{1/2})$ provided they are close enough to Gevrey data. Uniform rate of decay is also proved.
LA - eng
UR - http://eudml.org/doc/196152
ER -
References
top- AROSIO, A.- SPAGNOLO, S., Global solution of the Cauchy problem for a nonlinear hyperbolic equation, Nonlinear partial differential equations an their applications, College de France Seminar, Edited by H. Brezis & J. L. Lions, Pitman, London, 6 (1984), 1-26. Zbl0598.35062
- BERNSTEIN, S., Sur une classe d'equations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, ser. Mat., 4 (1940), 17-26 (Math. Rev. 2 No. 102). Zbl0026.01901MR2699JFM66.0471.01
- DAFERMOS, C. M., An Abstract Volterra Equation with application to linear Viscoelasticity, J. Differential Equations, 7 (1970), 554-589. Zbl0212.45302MR259670
- DAFERMOS, C. M.- NOHEL, J. A., Energy methods for non linear hyperbolic Volterra integro-differential equation, Comm. PDE, 4 (1979), 219-278. Zbl0464.45009MR522712
- D'ANCONA, P.- SPAGNOLO, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. Zbl0785.35067MR1161092
- DICKEY, R. W., Infinite systems of nonlinear oscillation equation related to the string, Proc. Amer. Math. Soc., 23 (1969), 459-468. Zbl0218.34015MR247189
- DICKEY, R. W., Infinite systems of nonlinear oscillation equations with linear damping, SIAM Journal of Applied Mathematics, 19, No. 1 (1970), 208-214. Zbl0233.34014MR265654
- GELFAND, I. M.- VILENKIN, N. YA., Fonctions Généralisées, IV, Academic Press, 1961.
- GREENBERG, J. M.- HU, S. C., The initial value problem for the stretched string, Quarterly of Applied Mathematics (1980), 289-311. Zbl0487.73006MR592197
- HUET, D., Décomposition spectrale et opérateurs, Presses Universitaires de France, 1977. Zbl0334.47015MR473900
- LAGNESE, J. E., Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International series of Numerical Mathematics, 91, 1989, Birhäuser, Verlag, Bassel. Zbl0699.93070MR1033061
- LIONS, J. L., Quelques méthodes de resolution des problèmes aux limites non lineares, Dunod Gauthier Villars, Paris, 1969. Zbl0189.40603MR259693
- LIONS, J. L.- DAUTRAY, R., Mathematical Analysis and Numerical Methods for science and Tecnology, 3, Spectral Theory and Applications, Springer Verlag1985, Masson, Paris, 1988. Zbl0766.47001
- MEDEIROS, L. A.- MILLA MIRANDA, M. A., On a nonlinear wave equation with damping, Revista de Matemática de la Universidad Complutense de Madrid, 3, No. 2 (1990). Zbl0721.35044MR1081312
- PERLA MENZALA, G. A., On global classical solution of a nonlinear wave equation with damping, Appl. Anal., 10 (1980), 179-195. Zbl0441.35037MR577330
- MUÑOZ RIVERA, J. E., Asymptotic behaviour in Linear Viscoelasticity, Quarterly of Applied Mathematics, III, 4, (1994), 629-648. Zbl0814.35009
- MUÑOZ RIVERA, J. E., Global Solution on a Quasilinear Wave Equation with Memory, Bollettino U.M.I. (7), 8-b (1994), 289-303. Zbl0802.45006MR1278337
- NISHIHARA, K., Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984), 125-145. Zbl0555.35094MR763940
- NISHIHARA, K., Global existence and Asymptotic behaviour of the solution of some quasilinear hyperbolic equation with linear damping, Funkcialaj Ekvacioj, 32 (1989), 343-355. Zbl0702.35165MR1040163
- POHOŽAEV, S. I., On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975), 145-158.
- RENARDY, M.- HRUSA, W. J.- NOHEL, J. A., Mathematical problems in Viscoelasticity, Pitman monograph in Pure and Applied Mathematics, 35, 1987. Zbl0719.73013MR919738
- TORREJÓN, R.- YONG, J., On a Quasilinear Wave Equation with memory, Nonlinear Analysis, Theory and Methods & Applications, 16, 1 (1991), 61-78. Zbl0738.35096
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.