The entropy principle: from continuum mechanics to hyperbolic systems of balance laws

Tommaso Ruggeri

Bollettino dell'Unione Matematica Italiana (2005)

  • Volume: 8-B, Issue: 1, page 1-20
  • ISSN: 0392-4041

Abstract

top
We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions. At the end we give some recent results on closure procedure for the moments theory associated to the Boltzmann equation (Extended Thermodynamics).

How to cite

top

Ruggeri, Tommaso. "The entropy principle: from continuum mechanics to hyperbolic systems of balance laws." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 1-20. <http://eudml.org/doc/196153>.

@article{Ruggeri2005,
abstract = {We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions. At the end we give some recent results on closure procedure for the moments theory associated to the Boltzmann equation (Extended Thermodynamics).},
author = {Ruggeri, Tommaso},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-20},
publisher = {Unione Matematica Italiana},
title = {The entropy principle: from continuum mechanics to hyperbolic systems of balance laws},
url = {http://eudml.org/doc/196153},
volume = {8-B},
year = {2005},
}

TY - JOUR
AU - Ruggeri, Tommaso
TI - The entropy principle: from continuum mechanics to hyperbolic systems of balance laws
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 1
EP - 20
AB - We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions. At the end we give some recent results on closure procedure for the moments theory associated to the Boltzmann equation (Extended Thermodynamics).
LA - eng
UR - http://eudml.org/doc/196153
ER -

References

top
  1. COLEMAN, B. D. - NOLL, W., The thermomechanics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13 (1963), 167-178. Zbl0113.17802MR153153
  2. MÜLLER, I., On the entropy inequality, Arch. Rational Mech. Anal., 26 (1967), 118-141. Zbl0163.46701MR214336
  3. A. GREEN - G. KELLER - G. WARNECKE Eds., Entropy, Series in Appl. Math.Princeton University Press, Princeton (2003). Zbl1187.00001MR2035814
  4. LAX, P. D., Shock Waves and Entropy, Contributions to Functional Analysis, 603-634, Ed. E. A. Zarantonello, New York, Academic Press (1971). Zbl0268.35014MR393870
  5. FRIEDRICHS, K. O. - LAX, P. D., Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688. Zbl0229.35061MR285799
  6. DAFERMOS, C., Hyperbolic Conservation Laws in Continuum Physics, Springer Verlag, Berlin (2000). Zbl1078.35001MR1763936
  7. LIU, T.-P., The Riemann Problem for General System of Conservation Laws, J. Differential Equations, 18 (1975), 218-234. Zbl0297.76057MR369939
  8. LIU, T.-P., The Admissible Solutions of Hyperbolic Conservation Laws, Memoir of AMS, 240 (1981), 78. Zbl0446.76058MR603391
  9. LIU, T.-P. - RUGGERI, T., Entropy Production and Admissibility of Shocks, Acta Math. Appl. Sin., Engl. Ser., 19, No. 1 (2003), 1-12. Zbl1029.35172MR2053765
  10. RUGGERI, T. - STRUMIA, A., Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics, Ann. Inst. Henri Poincarè, 34-A (1981), 65-84. Zbl0473.76126MR605357
  11. BOILLAT, G., Sur l'Existence et la Recherche d'Équations de Conservation Supplémentaires pour les Systèmes Hyperboliques, C.R. Acad. Sc. Paris, 278-A (1974), 909-912. Non Linear Fields and Waves. In CIME Course, Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics1640, T. Ruggeri Ed. Springer-Verlag (1995), 103-152. Zbl0279.35058MR342870
  12. GODUNOV, S. K., An interesting class of quasilinear systems, Sov. Math., Dokl.2 (1961), 947-949; translation from Dokl. Akad. Nauk SSSR, 139 (1961), 521-523. Zbl0125.06002MR131653
  13. BOILLAT, G. - RUGGERI, T., Hyperbolic Principal Subsystems: Entropy Convexity and Sub characteristic Conditions, Arch. Rat. Mech. Anal., 137 (1997), 305- 320. Zbl0878.35070MR1463797
  14. BOILLAT, G. - RUGGERI, T., On the shock structure problem for hyperbolic system of balance laws and convex entropy, Contin. Mech. Thermodyn., 10, No. 5 (1998), 285-292. Zbl0922.76237MR1652858
  15. RUGGERI, T., Maximum of Entropy Density in Equilibrium and Minimax Principle for an Hyperbolic System of Balance Laws, Contributions to Continuum Theories, Anniversary Volume for Krzysztoff Wilmanski, B. Albers editor WIAS-Report No. 18 (2000). 
  16. RUGGERI, T. - SERRE, D., Stability of constant equilibrium state for dissipative balance laws system with a convex entropy, Quarterly of Applied Math. To appear (2003). Zbl1068.35067MR2032577
  17. KAWASHIMA, S., Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. R. Soc. Edinb., Sect. A, 106 (1987), 169-194. Zbl0653.35066MR899951
  18. FISCHER, A. E. - MARSDEN, J. E., The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, Commun. Math. Phys., 28 (1972), 1-38. Zbl0247.35082MR309507
  19. MAJDA, A., Compressible fluid flow and systems of conservation laws in several space variables, Springer Verlag, New York (1984). Zbl0537.76001MR748308
  20. ZENG, Y., Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation, Arch. Ration. Mech. Anal., 150, No. 3 (1999), 225-279. Zbl0966.76079MR1738119
  21. HANOUZET, B. - NATALINI, R., Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Rat. Mech. Anal., 169 (2003), 89-117. Zbl1037.35041MR2005637
  22. MÜLLER, I. - RUGGERI, T., Rational Extended Thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy37, Springer-Verlag, New York (1998). Zbl0895.00005MR1632151
  23. GRAD, H., On the kinetic theory of rarefied gases, Comm. Appl. Math., 2 (1949), 331-407. Zbl0037.13104MR33674
  24. BOILLAT, G. - RUGGERI, T., Moment equations in the kinetic theory of gases and wave velocities, Contin. Mech. Thermodyn., 9, No. 4 (1997), 205-212. Zbl0892.76075MR1467331
  25. BOILLAT, G. - RUGGERI, T., Maximum wave velocity in the moments’ system of a relativistic gas, Contin. Mech. Thermodyn., 11, No. 2 (1999), 107-111. Zbl0935.76077MR1680244
  26. BOILLAT, G. - RUGGERI, T., Relativistic gas: Moment equations and maximum wave velocity, J. Math. Phys., 40, No. 12 (1999), 6399-6406. Zbl0962.82060MR1725865
  27. BRINI, F. - RUGGERI, T., Maximum velocity for wave propagation in a relativistic rarefied gas, Contin. Mech. Thermodyn., 11, No. 5 (1999), 331-338. Zbl0946.76084MR1723707
  28. WEISS, W., Die Berechnung von kontinuierlichen Stoßstrukturen in der Kinetischen Gastheorie, Habilitation thesis TU Berlin (1997). 
  29. WEISS, W. - MÜLLER, I., Light scattering and extended thermodynamics, Cont. Mech. Thermodyn., 7 (1995), 123-144. MR1333703
  30. STRUCHTRUP, H., An extended moment method in radiative transfer: The matrices of mean absorption and scattering coefficients, Annals of Physics, 257, No. 2 (1997), 111-135. Zbl0937.76065MR1460874
  31. KREMER, G. M. - MÜLLER, I., Thermal conductivity and dynamic pressure in extended thermodynamics of chemically reacting mixtures of gases, Ann. Inst. Henri Poincaré, Phys. Théor., 69, No. 3 (1998), 309-334. Zbl0964.80007MR1648986
  32. ANILE, A. M. - ROMANO, V. - RUSSO, G., Extended hydrodynamical model of carrier transport in semiconductors, SIAM J. Appl. Math., 61, No. 1 (2000), 74-101. Zbl0966.35076MR1776388
  33. DREYER, W., Maximisation of the Entropy in Non-Equilibrium, J. Phys. A: Math. Gen., 20 (1987), 6505-6512. Zbl0633.76081MR926398
  34. RUGGERI, T., Breakdown of Shock Wave Structure Solutions, Phys. Rev., 47-E, (6) (1993), 4135-4140. MR1377905
  35. WEISS, W., Continuous shock structure in extended thermodynamics, Phys. Review E, Part A, 52 (1995), 5760-5768. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.