An identity between the determinant and the permanent of Hessenberg-type matrices

Carlos Martins da Fonseca

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 917-921
  • ISSN: 0011-4642

Abstract

top
In this short note we provide an extension of the notion of Hessenberg matrix and observe an identity between the determinant and the permanent of such matrices. The celebrated identity due to Gibson involving Hessenberg matrices is consequently generalized.

How to cite

top

da Fonseca, Carlos Martins. "An identity between the determinant and the permanent of Hessenberg-type matrices." Czechoslovak Mathematical Journal 61.4 (2011): 917-921. <http://eudml.org/doc/196299>.

@article{daFonseca2011,
abstract = {In this short note we provide an extension of the notion of Hessenberg matrix and observe an identity between the determinant and the permanent of such matrices. The celebrated identity due to Gibson involving Hessenberg matrices is consequently generalized.},
author = {da Fonseca, Carlos Martins},
journal = {Czechoslovak Mathematical Journal},
keywords = {determinant; permanent; Hessenberg matrices; graphs; trees; determinant; permanent; Hessenberg matrix; graph; tree},
language = {eng},
number = {4},
pages = {917-921},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An identity between the determinant and the permanent of Hessenberg-type matrices},
url = {http://eudml.org/doc/196299},
volume = {61},
year = {2011},
}

TY - JOUR
AU - da Fonseca, Carlos Martins
TI - An identity between the determinant and the permanent of Hessenberg-type matrices
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 917
EP - 921
AB - In this short note we provide an extension of the notion of Hessenberg matrix and observe an identity between the determinant and the permanent of such matrices. The celebrated identity due to Gibson involving Hessenberg matrices is consequently generalized.
LA - eng
KW - determinant; permanent; Hessenberg matrices; graphs; trees; determinant; permanent; Hessenberg matrix; graph; tree
UR - http://eudml.org/doc/196299
ER -

References

top
  1. Agrawal, M., Determinant versus permanent, Proceedings of the international congress of mathematicians, Madrid, Spain, August 22-30, 2006 European Mathematical Society Zürich (2006), 985-997. (2006) Zbl1100.68037MR2275715
  2. Brualdi, R. A., Shader, B. L., 10.1090/dimacs/004/09, DIMACS, Ser. Discret. Math. Theor. Comput. Sci. 4 (1991), 117-134. (1991) MR1116343DOI10.1090/dimacs/004/09
  3. Botta, P., 10.4153/CMB-1968-004-6, Can. Math. Bull. 11 (1968), 31-34. (1968) Zbl0159.32201MR0230734DOI10.4153/CMB-1968-004-6
  4. Elsner, L., A note on generalized Hessenberg matrices, Linear Algebra Appl. 409 (2005), 147-152. (2005) Zbl1082.15038MR2170273
  5. Fiedler, M., Vavřín, Z., 10.1016/S0024-3795(03)00555-X, Linear Algebra Appl. 380 (2004), 95-105. (2004) MR2038742DOI10.1016/S0024-3795(03)00555-X
  6. Gibson, P. M., 10.2307/2316368, Am. Math. Mon. 76 (1969), 270-271. (1969) Zbl0174.31505MR0241439DOI10.2307/2316368
  7. Gibson, P. M., 10.1090/S0002-9939-1971-0279110-X, Proc. Am. Math. Soc. 27 (1971), 471-476. (1971) Zbl0194.06002MR0279110DOI10.1090/S0002-9939-1971-0279110-X
  8. Hwang, S.-G., Kim, S.-J., Song, S.-Z., On convertible complex matrices, Linear Algebra Appl. 233 (1996), 167-173. (1996) Zbl0856.15008MR1368080
  9. Coelho, M. P., Duffner, M. A., 10.1080/0308108031000114686, Linear Multilinear Algebra 51 (2002), 127-136. (2002) Zbl1042.15007MR1976858DOI10.1080/0308108031000114686
  10. Kräuter, A. R., Seifter, N., 10.1080/03081088308817530, Linear Multilinear Algebra 13 (1983), 311-322. (1983) Zbl0522.15003MR0704780DOI10.1080/03081088308817530
  11. Lim, M. H., A note on the relation between the determinant and the permanent, Linear Multilinear Algebra 7 (1979), 45-47. (1979) Zbl0403.15006MR0529883
  12. Marcus, M., Minc, H., 10.1215/ijm/1255630882, Ill. J. Math. 5 (1961), 376-381. (1961) Zbl0104.00904MR0147488DOI10.1215/ijm/1255630882
  13. McCuaig, W., Pólya's permanent problem, Electron. J. Comb. 11 (2004), Research paper R79. (2004) Zbl1062.05066MR2114183
  14. Pólya, G., Aufgabe 424, Arch. Math. Phys. Ser. 3 20 (1913), 271. (1913) 
  15. Reich, S., 10.2307/2316574, Am. Math. Mon. 78 (1971), 649-650. (1971) Zbl0224.15006MR1536369DOI10.2307/2316574
  16. Szegö, G., Lösung zu Aufgabe 424, Arch. Math. Phys. Ser. 3 21 (1913), 291-292. (1913) 
  17. Tarakanov, V. E., Zatorskiĭ, R. A., 10.1134/S0001434609010301, Math. Notes 85 (2009), 267-273. (2009) MR2548008DOI10.1134/S0001434609010301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.