The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Lehmer's problem and Dedekind sums”

On sums of binomial coefficients modulo p²

Zhi-Wei Sun (2012)

Colloquium Mathematicae

Similarity:

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

Mod 2 normal numbers and skew products

Geon Ho Choe, Toshihiro Hamachi, Hitoshi Nakada (2004)

Studia Mathematica

Similarity:

Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by d ( x ) : = i = 1 n 1 E ( 2 i - 1 x ) ( m o d 2 ) , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if N - 1 n = 1 N d ( x ) converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that N - 1 n = 1 N d ( x ) converges a.e. and the limit equals 1/3 or 2/3 depending on x.

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

On the quartic character of quadratic units

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and...

On a kind of generalized Lehmer problem

Rong Ma, Yulong Zhang (2012)

Czechoslovak Mathematical Journal

Similarity:

For 1 c p - 1 , let E 1 , E 2 , , E m be fixed numbers of the set { 0 , 1 } , and let a 1 , a 2 , , a m ( 1 a i p , i = 1 , 2 , , m ) be of opposite parity with E 1 , E 2 , , E m respectively such that a 1 a 2 a m c ( mod p ) . Let N ( c , m , p ) = 1 2 m - 1 a 1 = 1 p - 1 a 2 = 1 p - 1 a m = 1 p - 1 a 1 a 2 a m c ( mod p ) ( 1 - ( - 1 ) a 1 + E 1 ) ( 1 - ( - 1 ) a 2 + E 2 ) ( 1 - ( - 1 ) a m + E m ) . We are interested in the mean value of the sums c = 1 p - 1 E 2 ( c , m , p ) , where E ( c , m , p ) = N ( c , m , p ) - ( ( p - 1 ) m - 1 ) / ( 2 m - 1 ) for the odd prime p and any integers m 2 . When m = 2 , c = 1 , it is the Lehmer problem. In this paper, we generalize the Lehmer problem and use analytic method to give an interesting asymptotic formula of the generalized Lehmer problem.

Second moments of Dirichlet L -functions weighted by Kloosterman sums

Tingting Wang (2012)

Czechoslovak Mathematical Journal

Similarity:

For the general modulo q 3 and a general multiplicative character χ modulo q , the upper bound estimate of | S ( m , n , 1 , χ , q ) | is a very complex and difficult problem. In most cases, the Weil type bound for | S ( m , n , 1 , χ , q ) | is valid, but there are some counterexamples. Although the value distribution of | S ( m , n , 1 , χ , q ) | is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for k -th Kloosterman sums and analytic method to study the asymptotic...