On central atoms of Archimedean atomic lattice effect algebras
Kybernetika (2010)
- Volume: 46, Issue: 4, page 609-620
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKalina, Martin. "On central atoms of Archimedean atomic lattice effect algebras." Kybernetika 46.4 (2010): 609-620. <http://eudml.org/doc/196425>.
@article{Kalina2010,
abstract = {If element $z$ of a lattice effect algebra $(E,\oplus , \{\mathbf \{0\}\}, \{\mathbf \{1\}\})$ is central, then the interval $[\{\mathbf \{0\}\},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus $. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra $E$. We show that there exists a lattice effect algebra $(E,\oplus , \{\mathbf \{0\}\}, \{\mathbf \{1\}\})$ with atomic $C(E)$ which is not a bifull sublattice of $E$. Moreover, we show that also $B(E)$, the center of compatibility, may not be a bifull sublattice of $E$.},
author = {Kalina, Martin},
journal = {Kybernetika},
keywords = {lattice effect algebra; center; atom; bifullness; orthomodular lattice; lattice effect algebra; center; atom; bifullness; state; completeness},
language = {eng},
number = {4},
pages = {609-620},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On central atoms of Archimedean atomic lattice effect algebras},
url = {http://eudml.org/doc/196425},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Kalina, Martin
TI - On central atoms of Archimedean atomic lattice effect algebras
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 4
SP - 609
EP - 620
AB - If element $z$ of a lattice effect algebra $(E,\oplus , {\mathbf {0}}, {\mathbf {1}})$ is central, then the interval $[{\mathbf {0}},z]$ is a lattice effect algebra with the new top element $z$ and with inherited partial binary operation $\oplus $. It is a known fact that if the set $C(E)$ of central elements of $E$ is an atomic Boolean algebra and the supremum of all atoms of $C(E)$ in $E$ equals to the top element of $E$, then $E$ is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether $C(E)$ is a bifull sublattice of an Archimedean atomic lattice effect algebra $E$. We show that there exists a lattice effect algebra $(E,\oplus , {\mathbf {0}}, {\mathbf {1}})$ with atomic $C(E)$ which is not a bifull sublattice of $E$. Moreover, we show that also $B(E)$, the center of compatibility, may not be a bifull sublattice of $E$.
LA - eng
KW - lattice effect algebra; center; atom; bifullness; orthomodular lattice; lattice effect algebra; center; atom; bifullness; state; completeness
UR - http://eudml.org/doc/196425
ER -
References
top- Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structures, Kluwer Acad. Publisher, Dordrecht, Boston, London, and Isterscience, Bratislava 2000. (2000) MR1861369
- Foulis, D. J., Bennett, M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346. (1994) MR1304942
- Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/BF01108592, Order 12 (1995), 91–106. (1995) MR1336539DOI10.1007/BF01108592
- Gudder, S. P., Sharply dominating effect algebras, Tatra Mountains Math, Publ. 15 (1998), 23–30. (1998) MR1655076
- Gudder, S. P., 10.1023/A:1026637001130, Internat. J. Theor. Phys. 37 (1998), 915–923. (1998) Zbl0932.03072MR1624277DOI10.1023/A:1026637001130
- Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29. (1999)
- Kôpka, F., 10.1007/BF00676263, Interernat. J. Theor. Phys. 34 (1995), 1525–1531. (1995) MR1353696DOI10.1007/BF00676263
- Mosná, K., About atoms in generalized efect algebras and their effect algebraic extensions, J. Electr. Engrg. 57 (2006), 7/s, 110–113. (2006)
- Mosná, K., Paseka, J., Riečanová, Z., Order convergence and order and interval topologies on posets and lattice effect algebras, In: UNCERTAINTY2008, Proc. Internat. Seminar, Publishing House of STU 2008, pp. 45–62. (2008) MR2395159
- Paseka, J., Riečanová, Z., The inheritance of BDE-property in sharply dominating lattice effect algebras and -continuous states, Soft Computing, to appear.
- Riečanová, Z., Compatibility and central elements in effect algebras, Tatra Mountains Math. Publ. 16 (1999), 151–158. (1999) MR1725293
- Riečanová, Z., 10.1023/A:1026682215765, Internat. J. Theor. Phys. 38 (1999), 3209–3220. (1999) MR1764459DOI10.1023/A:1026682215765
- Riečanová, Z., 10.1023/A:1003619806024, J. Theor. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
- Riečanová, Z., Orthogonal sets in effect algebras, Demonstratio Math. 34 (2001), 525–532. (2001) Zbl0989.03071MR1853730
- Riečanová, Z., 10.1023/A:1020136531601, Interernat. J. Theor. Phys. 41 (2002), 1511–1524. (2002) MR1932844DOI10.1023/A:1020136531601
- Riečanová, Z., 10.1023/A:1025775827938, Interernat. J. Theor. Phys. 42 (2003), 1425–1433. (2003) Zbl1034.81003MR2021221DOI10.1023/A:1025775827938
- Riečanová, Z., Distributive atomic effect akgebras, Demonstratio Math. 36 (2003), 247–259. (2003) MR1984337
- Riečanová, Z., Marinová, I., Generalized homogenous, prelattice and MV-effect algebras, Kybernetika 41 (2005), 129–142. (2005) MR2138764
Citations in EuDML Documents
top- Zdena Riečanová, Lattice effect algebras densely embeddable into complete ones
- Martin Kalina, Mac Neille completion of centers and centers of Mac Neille completions of lattice effect algebras
- Radko Mesiar, Peter Sarkoci, Open problems posed at the tenth International conference on fuzzy set theory and applications (FSTA 2010, Liptovský Ján, Slovakia)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.