The minimum of two plurisubharmonic functions and a new characterization of holomorphic functions

Jamel Abidi; Mohamed Lassaad Ben Yattou

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 3, page 301-310
  • ISSN: 0862-7959

Abstract

top
We prove, among other results, that min ( u , v ) is plurisubharmonic (psh) when u , v belong to a family of functions in psh ( D ) Λ α ( D ) , where Λ α ( D ) is the α -Lipchitz functional space with 1 < α < 2 . Then we establish a new characterization of holomorphic functions defined on open sets of n .

How to cite

top

Abidi, Jamel, and Ben Yattou, Mohamed Lassaad. "Le minimum de deux fonctions plurisousharmoniques et une nouvelle caracterisation des fonctions holomorphes." Mathematica Bohemica 136.3 (2011): 301-310. <http://eudml.org/doc/196435>.

@article{Abidi2011,
author = {Abidi, Jamel, Ben Yattou, Mohamed Lassaad},
journal = {Mathematica Bohemica},
keywords = {maximum principle; plurisubharmonic function; maximum principle; plurisubharmonic function},
language = {fre},
number = {3},
pages = {301-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Le minimum de deux fonctions plurisousharmoniques et une nouvelle caracterisation des fonctions holomorphes},
url = {http://eudml.org/doc/196435},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Abidi, Jamel
AU - Ben Yattou, Mohamed Lassaad
TI - Le minimum de deux fonctions plurisousharmoniques et une nouvelle caracterisation des fonctions holomorphes
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 3
SP - 301
EP - 310
LA - fre
KW - maximum principle; plurisubharmonic function; maximum principle; plurisubharmonic function
UR - http://eudml.org/doc/196435
ER -

References

top
  1. Abidi, J., 10.1007/s002290100182, Manuscripta Math. 105 (2001), 471-482. (2001) Zbl1013.31002MR1858498DOI10.1007/s002290100182
  2. Abidi, J., Analycité, principe du maximum et fonctions plurisousharmoniques (à paraitre), . 
  3. Carleson, L., Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N.J., 1967. (Reprint: Wadswarth, Belmont, Cal., 1983). Zbl0505.00034MR0225986
  4. Cegrell, U., 10.1112/plms/s3-36.2.310, Proc. Lond. Math. Soc. 36 (1978), 310-336. (1978) Zbl0375.32013MR0484969DOI10.1112/plms/s3-36.2.310
  5. Cegrell, U., 10.1090/S0002-9939-1983-0695259-X, Proc. Amer. Math. Soc. 88 (1983), 283-286. (1983) Zbl0514.32011MR0695259DOI10.1090/S0002-9939-1983-0695259-X
  6. Conway, J. B., Functions of One Complex Variable II, Springer, Berlin (1995). (1995) Zbl0887.30003MR1344449
  7. Federer, H., Geometric Measure Theory, Springer, Berlin (1969). (1969) Zbl0176.00801MR0257325
  8. Gunning, R. C., Rossi, H., Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs (1965). (1965) Zbl0141.08601MR0180696
  9. Harvey, R., 10.2307/2373581, Amer. J. Math. 96 (1974), 67-78. (1974) Zbl0293.32015MR0361156DOI10.2307/2373581
  10. Harvey, R., Polking, J., 10.1002/cpa.3160280603, Comm. Pure Appl. Math. 28 (1975), 701-727. (1975) MR0409890DOI10.1002/cpa.3160280603
  11. Hayman, W. K., Kennedy, P. B., Subharmonic Functions, Academic Press (1976). (1976) Zbl0323.32013
  12. Henkin, G. M., Leiterer, J., Theory of Functions on Complex Manifolds, Birkhäuser, Boston, Mass. (1984). (1984) Zbl0726.32001MR0774049
  13. Hervé, M., Les fonctions analytiques, Presses Universitaires de France (1982). (1982) MR0696576
  14. Hörmander, L., An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, N.J. (1966). (1966) MR0203075
  15. Hyvönen, J., Rühentaus, J., 10.24033/bsmf.2017, Bull. Soc. Math. France 112 (1984), 469-480. (1984) MR0802536DOI10.24033/bsmf.2017
  16. Klimek, M., Pluripotential Theory, Clarendon Press, Oxford (1991). (1991) Zbl0742.31001MR1150978
  17. Krantz, S. G., Function Theory of Several Complex Variables, Wiley, New York (1982). (1982) Zbl0471.32008MR0635928
  18. Krantz, S. G., Lipschitz spaces, smoothness of functions, and approximation theory, Expo. Math. 3 (1983), 193-260. (1983) Zbl0518.46018MR0782608
  19. Lelong, P., Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, New York (1969). (1969) MR0243112
  20. O'Farrell, A. G., The 1-reduction for removable singularities, and the negative Hölder spaces, Pro. R. Ir. Acad. A 88 (1988), 133-151. (1988) Zbl0651.46041MR0986220
  21. Poletsky, E., The minimum principle, Indiana Univ. Math. J. 51 (2003), 269-304. (2003) MR1909290
  22. Range, R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, Berlin (1986). (1986) Zbl0591.32002MR0847923
  23. Ransford, T., Potential Theory in the Complex Plane, Cambridge University Press (1995). (1995) Zbl0828.31001MR1334766
  24. Riihentaus, J., 10.1307/mmj/1029002968, Michigan Math. J. 31 (1984), 99-112. (1984) MR0736475DOI10.1307/mmj/1029002968
  25. Ronkin, L. I., Introduction to the theory of entire functions of several variables, Amer. Math. Soc., Providence, RI (1974). (1974) Zbl0286.32004MR0346175
  26. Rudin, W., Function Theory in Polydiscs, Benjamin, New York (1969). (1969) Zbl0177.34101MR0255841
  27. Rudin, W., Function Theory in the Unit Ball of n , Springer, New York (1980). (1980) MR0601594
  28. Shiffman, B., 10.1307/mmj/1028999912, Michigan Math. J. 15 (1968), 111-120. (1968) Zbl0165.40503MR0224865DOI10.1307/mmj/1028999912
  29. Ullrich, D. C., 10.1307/mmj/1029004395, Michigan Math. J. 38 (1991), 467-473. (1991) Zbl0751.31001MR1116502DOI10.1307/mmj/1029004395
  30. Verdera, J., 10.1215/S0012-7094-87-05509-8, Duke Math. J. 55 (1987), 157-187. (1987) Zbl0654.35007MR0883668DOI10.1215/S0012-7094-87-05509-8
  31. Vladimirov, V. S., Les fonctions de plusieurs variables complexe (et leur application à la théorie quantique des champs), Dunod, Paris (1967). (1967) MR0218608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.