On the problem A x = λ B x in max algebra: every system of intervals is a spectrum

Sergeĭ Sergeev

Kybernetika (2011)

  • Volume: 47, Issue: 5, page 715-721
  • ISSN: 0023-5954

Abstract

top
We consider the two-sided eigenproblem A x = λ B x over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.

How to cite

top

Sergeev, Sergeĭ. "On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum." Kybernetika 47.5 (2011): 715-721. <http://eudml.org/doc/196440>.

@article{Sergeev2011,
abstract = {We consider the two-sided eigenproblem $A\otimes x=\lambda \otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.},
author = {Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {extremal algebra; tropical algebra; generalized eigenproblem; max algebra; generalized eigenproblem; tropical algebra; algorithm; eigenvector},
language = {eng},
number = {5},
pages = {715-721},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum},
url = {http://eudml.org/doc/196440},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Sergeev, Sergeĭ
TI - On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 5
SP - 715
EP - 721
AB - We consider the two-sided eigenproblem $A\otimes x=\lambda \otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.
LA - eng
KW - extremal algebra; tropical algebra; generalized eigenproblem; max algebra; generalized eigenproblem; tropical algebra; algorithm; eigenvector
UR - http://eudml.org/doc/196440
ER -

References

top
  1. Akian, M., Bapat, R., Gaubert, S., 10.1201/9781420010572.ch25, In: Handbook of Linear Algebra (L. Hogben, ed.), Discrete Math. Appl. 39, Chapter 25, Chapman and Hall 2006. (2006) DOI10.1201/9781420010572.ch25
  2. Baccelli, F. L., Cohen, G., Olsder, G.-J., Quadrat, J.-P., Synchronization and Linearity: An Algebra for Discrete Event Systems, Wiley 1992. (1992) Zbl0824.93003MR1204266
  3. Binding, P. A., Volkmer, H., A generalized eigenvalue problem in the max algebra, Linear Algebra Appl. 422 (2007), 360–371. (2007) Zbl1121.15011MR2305125
  4. Brunovsky, P., A classification of linear controllable systems, Kybernetika 6 (1970), 173–188. (1970) Zbl0199.48202MR0284247
  5. Burns, S. M., Performance Analysis and Optimization of Asynchronous Circuits, PhD Thesis, California Institute of Technology 1991. (1991) MR2686560
  6. Butkovič, P., Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl, 367 (2003), 313–335. (2003) MR1976928
  7. Butkovič, P., Max-linear Systems: Theory and Algorithms, Springer 2010. (2010) Zbl1202.15032MR2681232
  8. Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M. M., Quadrat, J. P., Numerical computation of spectral elements in max-plus algebra, In: Proc. IFAC Conference on Systems Structure and Control, IRCT, Nantes 1998, pp. 699–706. (1998) 
  9. Cuninghame-Green, R. A., Minimax Algebra, Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1979. (1979) Zbl0399.90052MR0580321
  10. Cuninghame-Green, R. A., Butkovič, P., 10.1016/S0304-3975(02)00228-1, Theoret. Comput. Sci. 293 (2003), 3–12. (2003) Zbl1021.65022MR1957609DOI10.1016/S0304-3975(02)00228-1
  11. Cuninghame-Green, R. A., Butkovič, P., Generalised eigenproblem in max algebra, In: Proc. 9th International Workshop WODES 2008, pp. 236–241. (2008) 
  12. Elsner, L., Driessche, P. van den, Modifying the power method in max algebra, Linear Algebra Appl. 332–334 (2001), 3–13. (2001) MR1839423
  13. Gantmacher, F. R., The Theory of Matrices, Chelsea, 1959. (1959) Zbl0085.01001
  14. Gaubert, S., Sergeev, S., The level set method for the two-sided eigenproblem, E-print http://arxiv.org/pdf/1006.5702. (1006) 
  15. Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work, Princeton Univ. Press, 2005. (2005) 
  16. McDonald, J. J., Olesky, D. D., Schneider, H., Tsatsomeros, M. J., Driessche, P. van den, Z-pencils, Electron. J. Linear Algebra 4 (1998), 32–38. (1998) MR1643088
  17. Mehrmann, V., Nabben, R., Virnik, E., Generalization of Perron-Frobenius theory to matrix pencils, Linear Algebra Appl. 428 (2008), 20–38. (2008) MR2372583

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.