On the problem in max algebra: every system of intervals is a spectrum
Kybernetika (2011)
- Volume: 47, Issue: 5, page 715-721
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSergeev, Sergeĭ. "On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum." Kybernetika 47.5 (2011): 715-721. <http://eudml.org/doc/196440>.
@article{Sergeev2011,
abstract = {We consider the two-sided eigenproblem $A\otimes x=\lambda \otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.},
author = {Sergeev, Sergeĭ},
journal = {Kybernetika},
keywords = {extremal algebra; tropical algebra; generalized eigenproblem; max algebra; generalized eigenproblem; tropical algebra; algorithm; eigenvector},
language = {eng},
number = {5},
pages = {715-721},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum},
url = {http://eudml.org/doc/196440},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Sergeev, Sergeĭ
TI - On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 5
SP - 715
EP - 721
AB - We consider the two-sided eigenproblem $A\otimes x=\lambda \otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.
LA - eng
KW - extremal algebra; tropical algebra; generalized eigenproblem; max algebra; generalized eigenproblem; tropical algebra; algorithm; eigenvector
UR - http://eudml.org/doc/196440
ER -
References
top- Akian, M., Bapat, R., Gaubert, S., 10.1201/9781420010572.ch25, In: Handbook of Linear Algebra (L. Hogben, ed.), Discrete Math. Appl. 39, Chapter 25, Chapman and Hall 2006. (2006) DOI10.1201/9781420010572.ch25
- Baccelli, F. L., Cohen, G., Olsder, G.-J., Quadrat, J.-P., Synchronization and Linearity: An Algebra for Discrete Event Systems, Wiley 1992. (1992) Zbl0824.93003MR1204266
- Binding, P. A., Volkmer, H., A generalized eigenvalue problem in the max algebra, Linear Algebra Appl. 422 (2007), 360–371. (2007) Zbl1121.15011MR2305125
- Brunovsky, P., A classification of linear controllable systems, Kybernetika 6 (1970), 173–188. (1970) Zbl0199.48202MR0284247
- Burns, S. M., Performance Analysis and Optimization of Asynchronous Circuits, PhD Thesis, California Institute of Technology 1991. (1991) MR2686560
- Butkovič, P., Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl, 367 (2003), 313–335. (2003) MR1976928
- Butkovič, P., Max-linear Systems: Theory and Algorithms, Springer 2010. (2010) Zbl1202.15032MR2681232
- Cochet-Terrasson, J., Cohen, G., Gaubert, S., Gettrick, M. M., Quadrat, J. P., Numerical computation of spectral elements in max-plus algebra, In: Proc. IFAC Conference on Systems Structure and Control, IRCT, Nantes 1998, pp. 699–706. (1998)
- Cuninghame-Green, R. A., Minimax Algebra, Lecture Notes in Econom. and Math. Systems 166, Springer, Berlin 1979. (1979) Zbl0399.90052MR0580321
- Cuninghame-Green, R. A., Butkovič, P., 10.1016/S0304-3975(02)00228-1, Theoret. Comput. Sci. 293 (2003), 3–12. (2003) Zbl1021.65022MR1957609DOI10.1016/S0304-3975(02)00228-1
- Cuninghame-Green, R. A., Butkovič, P., Generalised eigenproblem in max algebra, In: Proc. 9th International Workshop WODES 2008, pp. 236–241. (2008)
- Elsner, L., Driessche, P. van den, Modifying the power method in max algebra, Linear Algebra Appl. 332–334 (2001), 3–13. (2001) MR1839423
- Gantmacher, F. R., The Theory of Matrices, Chelsea, 1959. (1959) Zbl0085.01001
- Gaubert, S., Sergeev, S., The level set method for the two-sided eigenproblem, E-print http://arxiv.org/pdf/1006.5702. (1006)
- Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work, Princeton Univ. Press, 2005. (2005)
- McDonald, J. J., Olesky, D. D., Schneider, H., Tsatsomeros, M. J., Driessche, P. van den, Z-pencils, Electron. J. Linear Algebra 4 (1998), 32–38. (1998) MR1643088
- Mehrmann, V., Nabben, R., Virnik, E., Generalization of Perron-Frobenius theory to matrix pencils, Linear Algebra Appl. 428 (2008), 20–38. (2008) MR2372583
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.