A classification of linear controllable systems

Pavol Brunovský

Kybernetika (1970)

  • Volume: 06, Issue: 3, page (173)-188
  • ISSN: 0023-5954

How to cite


Brunovský, Pavol. "A classification of linear controllable systems." Kybernetika 06.3 (1970): (173)-188. <http://eudml.org/doc/28376>.

author = {Brunovský, Pavol},
journal = {Kybernetika},
keywords = {control theory},
language = {eng},
number = {3},
pages = {(173)-188},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A classification of linear controllable systems},
url = {http://eudml.org/doc/28376},
volume = {06},
year = {1970},

AU - Brunovský, Pavol
TI - A classification of linear controllable systems
JO - Kybernetika
PY - 1970
PB - Institute of Information Theory and Automation AS CR
VL - 06
IS - 3
SP - (173)
EP - 188
LA - eng
KW - control theory
UR - http://eudml.org/doc/28376
ER -


  1. V. M. Popov, Hyperstability and optimality of automatic systems with several control functions, Rev. Roumaine Sci. Tech., Electrotechn. et Energ. 9 (1964), 629-690. (1964) MR0365309
  2. V. M. Popov, Hyperstabilitatea sistemelor automate, Editura Academiei Rep. Soc. Romania, Bucharest 1966. (1966) MR0387747
  3. E. G. Gilbert, The decoupling of multivariable systems by state feedback, SIAM Journal on Control 7 (1969), 50-63. (1969) Zbl0175.10301MR0260443
  4. W. A. Wolowich, On the stabilization of controllable systems, (Pre-print.) 
  5. R. E. Kalman, Algebraic aspects of the theory of dynamical systems, Differential equations and dynamical systems, ed. by J. K. Hale and J. P. LaSalle, Academic Press 1967, 133-146. (1967) Zbl0207.39501MR0220532
  6. П. Бруновскы, О стабилизации линейных систем при определенном классе постоянно действующих возмущений, Дифференциальные уравнения 2 (1966), 769-777. (1966) Zbl1155.78304MR0224917
  7. P. Brunovský, Controllability and linear closed-loop controls in linear periodic systems, Journal of Differential equations 6 (1969), 296-313. (1969) MR0243180
  8. C. E. Langenhop, On the stabilization of linear systems, Proc. Am. Math. Soc. 15 (1964), 735-742. (1964) Zbl0129.06303MR0168408
  9. W. M. Wonham, On pole assignment in multi-input controllable linear systems, IEEE Transactions on automatic control AC-12 (1967), 660-665. (1967) 
  10. G. H. Hardy E. M. Wright, An Introduction to the theory of numbers, Clarendon 1938. (1938) MR0568909
  11. V. Doležal, The existence of a continuous basis of a certain linear subspace of E r which depends on a parameter, Čas. pěst. mat. 89 (1964), 466-469. (1964) MR0181644

Citations in EuDML Documents

  1. Klaus Röbenack, Alan Lynch, Observer design using a partial nonlinear observer canonical form
  2. Tadeusz Kaczorek, Canonical forms of singular 1D and 2D linear systems
  3. Michel Fliess, Some remarks on the Brunovsky canonical form
  4. Vladimír Kučera, Assigning the invariant factors by feedback
  5. Michail M. Konstantinov, Petko Hr. Petkov, Nicolai D. Christov, Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups
  6. Krzysztof Tchoń, On generic properties of linear systems: An overview
  7. Sergej Čelikovský, Global linearization of nonlinear systems - A survey
  8. Phan Nguyen Huynh, Sur la topologie de l'espace des systèmes linéaires hamiltoniens anti symétriques accessibles
  9. Sergeĭ Sergeev, On the problem A x = λ B x in max algebra: every system of intervals is a spectrum
  10. Jean-Baptiste Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.