Controllable and tolerable generalized eigenvectors of interval max-plus matrices

Matej Gazda; Ján Plavka

Kybernetika (2021)

  • Volume: 57, Issue: 6, page 922-938
  • ISSN: 0023-5954

Abstract

top
By max-plus algebra we mean the set of reals equipped with the operations a b = max { a , b } and a b = a + b for a , b . A vector x is said to be a generalized eigenvector of max-plus matrices A , B ( m , n ) if A x = λ B x for some λ . The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries are studied and complete solutions of the controllable, the tolerable and the strong generalized eigenproblem in max-plus algebra are presented. As a consequence of the obtained results, efficient algorithms for checking equivalent conditions are introduced.

How to cite

top

Gazda, Matej, and Plavka, Ján. "Controllable and tolerable generalized eigenvectors of interval max-plus matrices." Kybernetika 57.6 (2021): 922-938. <http://eudml.org/doc/298014>.

@article{Gazda2021,
abstract = {By max-plus algebra we mean the set of reals $\mathbb \{R\}$ equipped with the operations $a\oplus b=\max \lbrace a,b\rbrace $ and $a\otimes b= a+b $ for $a,b\in \mathbb \{R\}.$ A vector $x$ is said to be a generalized eigenvector of max-plus matrices $A, B\in \mathbb \{R\}(m,n)$ if $A\otimes x=\lambda \otimes B\otimes x$ for some $\lambda \in \mathbb \{R\}$. The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries are studied and complete solutions of the controllable, the tolerable and the strong generalized eigenproblem in max-plus algebra are presented. As a consequence of the obtained results, efficient algorithms for checking equivalent conditions are introduced.},
author = {Gazda, Matej, Plavka, Ján},
journal = {Kybernetika},
keywords = {interval generalized eigenvector; fuzzy matrix},
language = {eng},
number = {6},
pages = {922-938},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllable and tolerable generalized eigenvectors of interval max-plus matrices},
url = {http://eudml.org/doc/298014},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Gazda, Matej
AU - Plavka, Ján
TI - Controllable and tolerable generalized eigenvectors of interval max-plus matrices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 922
EP - 938
AB - By max-plus algebra we mean the set of reals $\mathbb {R}$ equipped with the operations $a\oplus b=\max \lbrace a,b\rbrace $ and $a\otimes b= a+b $ for $a,b\in \mathbb {R}.$ A vector $x$ is said to be a generalized eigenvector of max-plus matrices $A, B\in \mathbb {R}(m,n)$ if $A\otimes x=\lambda \otimes B\otimes x$ for some $\lambda \in \mathbb {R}$. The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries are studied and complete solutions of the controllable, the tolerable and the strong generalized eigenproblem in max-plus algebra are presented. As a consequence of the obtained results, efficient algorithms for checking equivalent conditions are introduced.
LA - eng
KW - interval generalized eigenvector; fuzzy matrix
UR - http://eudml.org/doc/298014
ER -

References

top
  1. Allamigeon, X., Legay, A., Fahrenberg, U., Katz, R., Gaubert, S., , Int. J. Algebra Comput. 24 (2014), 5, 569-607. MR3254715DOI
  2. Binding, P. A., Volkmer, H., , Linear Algebra Appl. 422 (2007), 360-371. MR2305125DOI
  3. Butkovič, P., Max-linear Systems: Theory and Applications., Springer, 2010. MR2681232
  4. Butkovič, P., Jones, D., , SIAM J. Matrix Anal. Appl. 37 (2016), 1002-1021. MR3532805DOI
  5. Cechlárová, K., Solutions of interval linear systems in ( m a x , + ) -algebra., In: Proc. 6th International Symposium on Operational Research Preddvor, Slovenia 2001, pp. 321-326. MR1861219
  6. Cuninghame-Green, R. A., Minimax algebra and applications., Advances in Imaging and Electron Physics 90 (1995), 1-121. Zbl0739.90073MR0618736
  7. Cuninghame-Green, R. A., Butkovič, P., Generalised eigenproblem in max algebra., In: Proc. 9th IEEE International Workshop on Discrete Event Systems (WODES 2008), Goteborg 2008, pp.36-241. 
  8. Gaubert, S., Sergeev, S., , Discrete Event Dynamic Systems 23 (2013), 105-134. MR3047479DOI
  9. Gavalec, M., Plavka, J., Ponce, D., , Inform. Sci. 367-368 (2016), 14-27. DOI
  10. Gavalec, M., Plavka, J., Ponce, D., , Fuzzy Sets and Systems 369 (2019), 145-156. MR3953380DOI
  11. Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work., Princeton University Press, 2005. MR2188299
  12. Karp, R. M., , Discrete Math. 23 (1978), 309-311. Zbl0386.05032MR0523080DOI
  13. Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 6, 2757-2769. MR3008532DOI
  14. Myšková, H., Plavka, J., , Linear Algebra Appl. 445 (2014), 85-102. MR3151265DOI
  15. Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI
  16. Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI
  17. Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. DOI
  18. Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 128-140. Zbl1267.15026MR3097386
  19. Plavka, J., 10.1016/j.dam.2005.02.017, Discrete Appl. Math. 150 (2005), 16-28. MR2161336DOI10.1016/j.dam.2005.02.017
  20. Plavka, J., , Discrete Appl. Math. 173 (2014) 92-101. MR3202295DOI
  21. Plavka, J., Sergeev, S., , Linear Algebra Appl. 550 (2018) 59-86. MR3786247DOI
  22. Sergeev, S., On the problem A x = λ B x in max-algebra: every system of interval is a spectrum., Kybernetika 47 (2011), 715-721. MR2850458
  23. Sergeev, S., , Linear Algebra Appl. 479 (2015), 106-117. MR3345883DOI
  24. Zimmermann, K., Extremální algebra (in Czech)., Ekon. ústav ČSAV Praha, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.