Controllable and tolerable generalized eigenvectors of interval max-plus matrices
Kybernetika (2021)
- Volume: 57, Issue: 6, page 922-938
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGazda, Matej, and Plavka, Ján. "Controllable and tolerable generalized eigenvectors of interval max-plus matrices." Kybernetika 57.6 (2021): 922-938. <http://eudml.org/doc/298014>.
@article{Gazda2021,
abstract = {By max-plus algebra we mean the set of reals $\mathbb \{R\}$ equipped with the operations $a\oplus b=\max \lbrace a,b\rbrace $ and $a\otimes b= a+b $ for $a,b\in \mathbb \{R\}.$ A vector $x$ is said to be a generalized eigenvector of max-plus matrices $A, B\in \mathbb \{R\}(m,n)$ if $A\otimes x=\lambda \otimes B\otimes x$ for some $\lambda \in \mathbb \{R\}$. The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries are studied and complete solutions of the controllable, the tolerable and the strong generalized eigenproblem in max-plus algebra are presented. As a consequence of the obtained results, efficient algorithms for checking equivalent conditions are introduced.},
author = {Gazda, Matej, Plavka, Ján},
journal = {Kybernetika},
keywords = {interval generalized eigenvector; fuzzy matrix},
language = {eng},
number = {6},
pages = {922-938},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllable and tolerable generalized eigenvectors of interval max-plus matrices},
url = {http://eudml.org/doc/298014},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Gazda, Matej
AU - Plavka, Ján
TI - Controllable and tolerable generalized eigenvectors of interval max-plus matrices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 922
EP - 938
AB - By max-plus algebra we mean the set of reals $\mathbb {R}$ equipped with the operations $a\oplus b=\max \lbrace a,b\rbrace $ and $a\otimes b= a+b $ for $a,b\in \mathbb {R}.$ A vector $x$ is said to be a generalized eigenvector of max-plus matrices $A, B\in \mathbb {R}(m,n)$ if $A\otimes x=\lambda \otimes B\otimes x$ for some $\lambda \in \mathbb {R}$. The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries are studied and complete solutions of the controllable, the tolerable and the strong generalized eigenproblem in max-plus algebra are presented. As a consequence of the obtained results, efficient algorithms for checking equivalent conditions are introduced.
LA - eng
KW - interval generalized eigenvector; fuzzy matrix
UR - http://eudml.org/doc/298014
ER -
References
top- Allamigeon, X., Legay, A., Fahrenberg, U., Katz, R., Gaubert, S., , Int. J. Algebra Comput. 24 (2014), 5, 569-607. MR3254715DOI
- Binding, P. A., Volkmer, H., , Linear Algebra Appl. 422 (2007), 360-371. MR2305125DOI
- Butkovič, P., Max-linear Systems: Theory and Applications., Springer, 2010. MR2681232
- Butkovič, P., Jones, D., , SIAM J. Matrix Anal. Appl. 37 (2016), 1002-1021. MR3532805DOI
- Cechlárová, K., Solutions of interval linear systems in -algebra., In: Proc. 6th International Symposium on Operational Research Preddvor, Slovenia 2001, pp. 321-326. MR1861219
- Cuninghame-Green, R. A., Minimax algebra and applications., Advances in Imaging and Electron Physics 90 (1995), 1-121. Zbl0739.90073MR0618736
- Cuninghame-Green, R. A., Butkovič, P., Generalised eigenproblem in max algebra., In: Proc. 9th IEEE International Workshop on Discrete Event Systems (WODES 2008), Goteborg 2008, pp.36-241.
- Gaubert, S., Sergeev, S., , Discrete Event Dynamic Systems 23 (2013), 105-134. MR3047479DOI
- Gavalec, M., Plavka, J., Ponce, D., , Inform. Sci. 367-368 (2016), 14-27. DOI
- Gavalec, M., Plavka, J., Ponce, D., , Fuzzy Sets and Systems 369 (2019), 145-156. MR3953380DOI
- Heidergott, B., Olsder, G.-J., Woude, J. van der, Max-plus at Work., Princeton University Press, 2005. MR2188299
- Karp, R. M., , Discrete Math. 23 (1978), 309-311. Zbl0386.05032MR0523080DOI
- Myšková, H., Plavka, J., , Linear Algebra Appl. 438 (2013), 6, 2757-2769. MR3008532DOI
- Myšková, H., Plavka, J., , Linear Algebra Appl. 445 (2014), 85-102. MR3151265DOI
- Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI
- Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI
- Myšková, H., , Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. DOI
- Plavka, J., On the weak robustness of fuzzy matrices., Kybernetika 49 (2013), 128-140. Zbl1267.15026MR3097386
- Plavka, J., 10.1016/j.dam.2005.02.017, Discrete Appl. Math. 150 (2005), 16-28. MR2161336DOI10.1016/j.dam.2005.02.017
- Plavka, J., , Discrete Appl. Math. 173 (2014) 92-101. MR3202295DOI
- Plavka, J., Sergeev, S., , Linear Algebra Appl. 550 (2018) 59-86. MR3786247DOI
- Sergeev, S., On the problem in max-algebra: every system of interval is a spectrum., Kybernetika 47 (2011), 715-721. MR2850458
- Sergeev, S., , Linear Algebra Appl. 479 (2015), 106-117. MR3345883DOI
- Zimmermann, K., Extremální algebra (in Czech)., Ekon. ústav ČSAV Praha, 1976.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.