The structure of the unit group of the group algebra 𝔽 2 k A 4

Joe Gildea

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 531-539
  • ISSN: 0011-4642

Abstract

top
The structure of the unit group of the group algebra of the group A 4 over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.

How to cite

top

Gildea, Joe. "The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$." Czechoslovak Mathematical Journal 61.2 (2011): 531-539. <http://eudml.org/doc/196474>.

@article{Gildea2011,
abstract = {The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.},
author = {Gildea, Joe},
journal = {Czechoslovak Mathematical Journal},
keywords = {group ring; group algebra; dihedral group; cyclic group; unit groups; group rings; group algebras; alternating group ; cyclic groups},
language = {eng},
number = {2},
pages = {531-539},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of the unit group of the group algebra $\mathbb \{F\}_\{2^k\}A_4$},
url = {http://eudml.org/doc/196474},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Gildea, Joe
TI - The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 531
EP - 539
AB - The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
LA - eng
KW - group ring; group algebra; dihedral group; cyclic group; unit groups; group rings; group algebras; alternating group ; cyclic groups
UR - http://eudml.org/doc/196474
ER -

References

top
  1. Bovdi, A. A., Erdei, L., Unitary units in the modular group algebra of groups of order 16, Technical Reports Debrecen 96/4 (1996), 57-72. (1996) MR1283327
  2. Bovdi, A. A., Szakács, A., Unitary subgroup of the group of units of a modular group algebra of a finite abelian p -group, Math. Zametki 45 (1989), 23-29. (1989) MR1019032
  3. Bovdi, V. A., Kovács, L. G., 10.1007/BF02567443, Manuscr. Math. 84 (1994), 57-72. (1994) MR1283327DOI10.1007/BF02567443
  4. Bovdi, V., Rosa, A. L., 10.1080/00927870008826934, Commun. Algebra 28 (2000), 1897-1905. (2000) Zbl0952.16022MR1747361DOI10.1080/00927870008826934
  5. Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull 54 (2011), 237-243. doi:10.4153/CMB-2010-098-5. (2011) MR2884238DOI10.4153/CMB-2010-098-5
  6. Creedon, L., Gildea, J., 10.1142/S0218196709005081, Internat. J. Algebra Comput. 19 (2009), 283-286. (2009) MR2512555DOI10.1142/S0218196709005081
  7. Davis, P. J., Circulant Matrices, Chelsea Publishing New York (1979). (1979) Zbl0418.15017MR0543191
  8. Hurley, T., Group rings and rings of matrices, Int. J. Pure Appl. Math. 31 (2006), 319-335. (2006) Zbl1136.20004MR2266951
  9. Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Kluwer Academic Publishers Dordrecht (2002). (2002) MR1896125
  10. Sandling, R., 10.1016/0022-4049(84)90066-5, J. Pure Appl. Algebra 33 (1984), 337-346. (1984) Zbl0543.20008MR0761637DOI10.1016/0022-4049(84)90066-5
  11. Sandling, R., Presentations for units groups of modular group algebras of groups of order 16, Math. Comp. 59 (1992), 689-701. (1992) MR1136226
  12. Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of F A 4 , Publ. Math. Debrecen 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.