The structure of the unit group of the group algebra
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 531-539
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGildea, Joe. "The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$." Czechoslovak Mathematical Journal 61.2 (2011): 531-539. <http://eudml.org/doc/196474>.
@article{Gildea2011,
abstract = {The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.},
author = {Gildea, Joe},
journal = {Czechoslovak Mathematical Journal},
keywords = {group ring; group algebra; dihedral group; cyclic group; unit groups; group rings; group algebras; alternating group ; cyclic groups},
language = {eng},
number = {2},
pages = {531-539},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The structure of the unit group of the group algebra $\mathbb \{F\}_\{2^k\}A_4$},
url = {http://eudml.org/doc/196474},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Gildea, Joe
TI - The structure of the unit group of the group algebra $\mathbb {F}_{2^k}A_4$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 531
EP - 539
AB - The structure of the unit group of the group algebra of the group $A_4$ over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.
LA - eng
KW - group ring; group algebra; dihedral group; cyclic group; unit groups; group rings; group algebras; alternating group ; cyclic groups
UR - http://eudml.org/doc/196474
ER -
References
top- Bovdi, A. A., Erdei, L., Unitary units in the modular group algebra of groups of order 16, Technical Reports Debrecen 96/4 (1996), 57-72. (1996) MR1283327
- Bovdi, A. A., Szakács, A., Unitary subgroup of the group of units of a modular group algebra of a finite abelian -group, Math. Zametki 45 (1989), 23-29. (1989) MR1019032
- Bovdi, V. A., Kovács, L. G., 10.1007/BF02567443, Manuscr. Math. 84 (1994), 57-72. (1994) MR1283327DOI10.1007/BF02567443
- Bovdi, V., Rosa, A. L., 10.1080/00927870008826934, Commun. Algebra 28 (2000), 1897-1905. (2000) Zbl0952.16022MR1747361DOI10.1080/00927870008826934
- Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull 54 (2011), 237-243. doi:10.4153/CMB-2010-098-5. (2011) MR2884238DOI10.4153/CMB-2010-098-5
- Creedon, L., Gildea, J., 10.1142/S0218196709005081, Internat. J. Algebra Comput. 19 (2009), 283-286. (2009) MR2512555DOI10.1142/S0218196709005081
- Davis, P. J., Circulant Matrices, Chelsea Publishing New York (1979). (1979) Zbl0418.15017MR0543191
- Hurley, T., Group rings and rings of matrices, Int. J. Pure Appl. Math. 31 (2006), 319-335. (2006) Zbl1136.20004MR2266951
- Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Kluwer Academic Publishers Dordrecht (2002). (2002) MR1896125
- Sandling, R., 10.1016/0022-4049(84)90066-5, J. Pure Appl. Algebra 33 (1984), 337-346. (1984) Zbl0543.20008MR0761637DOI10.1016/0022-4049(84)90066-5
- Sandling, R., Presentations for units groups of modular group algebras of groups of order 16, Math. Comp. 59 (1992), 689-701. (1992) MR1136226
- Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of , Publ. Math. Debrecen 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031
Citations in EuDML Documents
top- Gaohua Tang, Yangjiang Wei, Yuanlin Li, Unit groups of group algebras of some small groups
- Gaurav Mittal, Rajendra Kumar Sharma, On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
- Rajendra K. Sharma, Gaurav Mittal, On the unit group of a semisimple group algebra
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.