On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
Gaurav Mittal; Rajendra Kumar Sharma
Mathematica Bohemica (2021)
- Volume: 146, Issue: 4, page 429-455
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMittal, Gaurav, and Sharma, Rajendra Kumar. "On unit group of finite semisimple group algebras of non-metabelian groups up to order 72." Mathematica Bohemica 146.4 (2021): 429-455. <http://eudml.org/doc/297419>.
@article{Mittal2021,
abstract = {We characterize the unit group of semisimple group algebras $\mathbb \{F\}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.},
author = {Mittal, Gaurav, Sharma, Rajendra Kumar},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {4},
pages = {429-455},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On unit group of finite semisimple group algebras of non-metabelian groups up to order 72},
url = {http://eudml.org/doc/297419},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Mittal, Gaurav
AU - Sharma, Rajendra Kumar
TI - On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 429
EP - 455
AB - We characterize the unit group of semisimple group algebras $\mathbb {F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/297419
ER -
References
top- Bovdi, A. A., Kurdics, J., 10.1006/jabr.1998.7617, J. Algebra 212 (1999), 28-64. (1999) Zbl0936.16028MR1670626DOI10.1006/jabr.1998.7617
- Bovdi, V., Salim, M., 10.14232/actasm-013-510-1, Acta Sci. Math. 80 (2014), 433-445. (2014) Zbl1322.16024MR3307035DOI10.14232/actasm-013-510-1
- Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull. 54 (2011), 237-243. (2011) Zbl1242.16033MR2884238DOI10.4153/CMB-2010-098-5
- Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
- Gildea, J., 10.1007/s10587-011-0071-5, Czech. Math. J. 61 (2011), 531-539. (2011) Zbl1237.16035MR2905421DOI10.1007/s10587-011-0071-5
- Gildea, J., Monaghan, F., Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math. 11 (2011), 46-58. (2011) Zbl1256.16023MR2868359
- Hurley, T., Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), 431-463. (2009) Zbl1173.94452MR2490664
- Karpilovsky, G., 10.1016/s0304-0208(08)x7052-5, North-Holland Mathematics Studies 135. North-Holland, Amsterdam (1987). (1987) Zbl0618.16001MR0886889DOI10.1016/s0304-0208(08)x7052-5
- Khan, M., Sharma, R. K., Srivastava, J. B., 10.1007/s10474-007-6169-4, Acta Math. Hung. 118 (2008), 105-113. (2008) Zbl1156.16024MR2378543DOI10.1007/s10474-007-6169-4
- Kumar, Y., On The Unit Group Of Certain Finite Group Algebras, PhD Thesis. Indian Institute of Technology Delhi (IIT Delhi), New Delhi (2019), Available at http://eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1. (2019)
- Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
- Maheshwari, S., Sharma, R. K., 10.13069/jacodesmath.83854, J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. (2016) Zbl1429.16027MR3450932DOI10.13069/jacodesmath.83854
- Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of , Serdica Math. J. 41 (2015), 185-198. (2015) MR3363601
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1016/j.joems.2014.08.001, J. Egypt. Math. Soc. 24 (2016), 5-7. (2016) Zbl1336.16042MR3456857DOI10.1016/j.joems.2014.08.001
- Pazderski, G., 10.1002/mana.19800950102, Math. Nachr. 95 (1980), 7-16. (1980) Zbl0468.20018MR0592878DOI10.1002/mana.19800950102
- Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
- Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl0997.20003MR1896125
- Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of , Publ. Math. 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031
- Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of , Acta Math. Acad. Paedagog. Nyházi 23 (2007), 129-142. (2007) Zbl1135.16034MR2368934
- Tang, G., Wei, Y., Li, Y., 10.1007/s10587-014-0090-0, Czech. Math. J. 64 (2014), 149-157. (2014) Zbl1340.16040MR3247451DOI10.1007/s10587-014-0090-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.