On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal; Rajendra Kumar Sharma

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 429-455
  • ISSN: 0862-7959

Abstract

top
We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

How to cite

top

Mittal, Gaurav, and Sharma, Rajendra Kumar. "On unit group of finite semisimple group algebras of non-metabelian groups up to order 72." Mathematica Bohemica 146.4 (2021): 429-455. <http://eudml.org/doc/297419>.

@article{Mittal2021,
abstract = {We characterize the unit group of semisimple group algebras $\mathbb \{F\}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.},
author = {Mittal, Gaurav, Sharma, Rajendra Kumar},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {4},
pages = {429-455},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On unit group of finite semisimple group algebras of non-metabelian groups up to order 72},
url = {http://eudml.org/doc/297419},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Mittal, Gaurav
AU - Sharma, Rajendra Kumar
TI - On unit group of finite semisimple group algebras of non-metabelian groups up to order 72
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 429
EP - 455
AB - We characterize the unit group of semisimple group algebras $\mathbb {F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/297419
ER -

References

top
  1. Bovdi, A. A., Kurdics, J., 10.1006/jabr.1998.7617, J. Algebra 212 (1999), 28-64. (1999) Zbl0936.16028MR1670626DOI10.1006/jabr.1998.7617
  2. Bovdi, V., Salim, M., 10.14232/actasm-013-510-1, Acta Sci. Math. 80 (2014), 433-445. (2014) Zbl1322.16024MR3307035DOI10.14232/actasm-013-510-1
  3. Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull. 54 (2011), 237-243. (2011) Zbl1242.16033MR2884238DOI10.4153/CMB-2010-098-5
  4. Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
  5. Gildea, J., 10.1007/s10587-011-0071-5, Czech. Math. J. 61 (2011), 531-539. (2011) Zbl1237.16035MR2905421DOI10.1007/s10587-011-0071-5
  6. Gildea, J., Monaghan, F., Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math. 11 (2011), 46-58. (2011) Zbl1256.16023MR2868359
  7. Hurley, T., Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), 431-463. (2009) Zbl1173.94452MR2490664
  8. Karpilovsky, G., 10.1016/s0304-0208(08)x7052-5, North-Holland Mathematics Studies 135. North-Holland, Amsterdam (1987). (1987) Zbl0618.16001MR0886889DOI10.1016/s0304-0208(08)x7052-5
  9. Khan, M., Sharma, R. K., Srivastava, J. B., 10.1007/s10474-007-6169-4, Acta Math. Hung. 118 (2008), 105-113. (2008) Zbl1156.16024MR2378543DOI10.1007/s10474-007-6169-4
  10. Kumar, Y., On The Unit Group Of Certain Finite Group Algebras, PhD Thesis. Indian Institute of Technology Delhi (IIT Delhi), New Delhi (2019), Available at http://eprint.iitd.ac.in/bitstream/handle/2074/8276/TH-5966.pdf?sequence=1. (2019) 
  11. Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
  12. Maheshwari, S., Sharma, R. K., 10.13069/jacodesmath.83854, J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. (2016) Zbl1429.16027MR3450932DOI10.13069/jacodesmath.83854
  13. Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of F q [ D 30 ] , Serdica Math. J. 41 (2015), 185-198. (2015) MR3363601
  14. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
  15. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1016/j.joems.2014.08.001, J. Egypt. Math. Soc. 24 (2016), 5-7. (2016) Zbl1336.16042MR3456857DOI10.1016/j.joems.2014.08.001
  16. Pazderski, G., 10.1002/mana.19800950102, Math. Nachr. 95 (1980), 7-16. (1980) Zbl0468.20018MR0592878DOI10.1002/mana.19800950102
  17. Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
  18. Milies, C. Polcino, Sehgal, S. K., An Introduction to Group Rings, Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl0997.20003MR1896125
  19. Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of F A 4 , Publ. Math. 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031
  20. Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of F S 3 , Acta Math. Acad. Paedagog. Nyházi 23 (2007), 129-142. (2007) Zbl1135.16034MR2368934
  21. Tang, G., Wei, Y., Li, Y., 10.1007/s10587-014-0090-0, Czech. Math. J. 64 (2014), 149-157. (2014) Zbl1340.16040MR3247451DOI10.1007/s10587-014-0090-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.