On the unit group of a semisimple group algebra
Rajendra K. Sharma; Gaurav Mittal
Mathematica Bohemica (2022)
- Volume: 147, Issue: 1, page 1-10
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSharma, Rajendra K., and Mittal, Gaurav. "On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$." Mathematica Bohemica 147.1 (2022): 1-10. <http://eudml.org/doc/298042>.
@article{Sharma2022,
abstract = {We give the characterization of the unit group of $\mathbb \{F\}_qSL(2, \mathbb \{Z\}_5)$, where $\mathbb \{F\}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb \{Z\}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb \{Z\}_5$.},
author = {Sharma, Rajendra K., Mittal, Gaurav},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the unit group of a semisimple group algebra $\mathbb \{F\}_qSL(2, \mathbb \{Z\}_5)$},
url = {http://eudml.org/doc/298042},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Sharma, Rajendra K.
AU - Mittal, Gaurav
TI - On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 1
EP - 10
AB - We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/298042
ER -
References
top- Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull. 54 (2011), 237-243. (2011) Zbl1242.16033MR2884238DOI10.4153/CMB-2010-098-5
- Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
- Gildea, J., 10.1007/s10587-011-0071-5, Czech. Math. J. 61 (2011), 531-539. (2011) Zbl1237.16035MR2905421DOI10.1007/s10587-011-0071-5
- Gildea, J., Monaghan, F., Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math. 11 (2011), 46-58. (2011) Zbl1256.16023MR2868359
- Hurley, T., Group rings and rings of matrices, Int. J. Pure Appl. Math. 31 (2006), 319-335. (2006) Zbl1136.20004MR2266951
- Hurley, T., Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), 431-463. (2009) Zbl1173.94452MR2490664
- Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
- Maheshwari, S., Sharma, R. K., 10.13069/jacodesmath.83854, J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. (2016) Zbl1429.16027MR3450932DOI10.13069/jacodesmath.83854
- Makhijani, N., Sharma, R. K., Srivastava, J. B., A note on units of , Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. (2014) Zbl1324.16035MR3285078
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1142/S0219498813500904, Int. J. Group Theory 3 (2014), 13-16. (2014) Zbl1335.16028MR3181770DOI10.1142/S0219498813500904
- Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of , Serdica Math. J. 41 (2015), 185-198. (2015) MR3363601
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.2989/16073606.2015.1024410, Quaest. Math. 39 (2016), 9-28. (2016) Zbl1445.16023MR3483353DOI10.2989/16073606.2015.1024410
- Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1016/j.joems.2014.08.001, J. Egypt. Math. Soc. 24 (2016), 5-7. (2016) Zbl1336.16042MR3456857DOI10.1016/j.joems.2014.08.001
- Mittal, G., Sharma, R., 10.21136/MB.2021.0116-19, Math. Bohem. 146 (2021), 429-455. (2021) MR4336549DOI10.21136/MB.2021.0116-19
- Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
- Milies, C. Polcino, Sehgal, S. K., Sudarshan, S., 10.1007/978-94-010-0405-3, Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl0997.20003MR1896125DOI10.1007/978-94-010-0405-3
- Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of , Publ. Math. 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031
- Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of , Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 129-142. (2007) Zbl1135.16034MR2368934
- Sharma, R. K., Yadav, P., Unit group of algebra of circulant matrices, Int. J. Group Theory 2 (2013), 1-6. (2013) Zbl1306.16037MR3053357
- Tang, G., Wei, Y., Li, Y., 10.1007/s10587-014-0090-0, Czech. Math. J. 64 (2014), 149-157. (2014) Zbl1340.16040MR3247451DOI10.1007/s10587-014-0090-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.