On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma; Gaurav Mittal

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 1-10
  • ISSN: 0862-7959

Abstract

top
We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

How to cite

top

Sharma, Rajendra K., and Mittal, Gaurav. "On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$." Mathematica Bohemica 147.1 (2022): 1-10. <http://eudml.org/doc/298042>.

@article{Sharma2022,
abstract = {We give the characterization of the unit group of $\mathbb \{F\}_qSL(2, \mathbb \{Z\}_5)$, where $\mathbb \{F\}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb \{Z\}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb \{Z\}_5$.},
author = {Sharma, Rajendra K., Mittal, Gaurav},
journal = {Mathematica Bohemica},
keywords = {unit group; finite field; Wedderburn decomposition},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the unit group of a semisimple group algebra $\mathbb \{F\}_qSL(2, \mathbb \{Z\}_5)$},
url = {http://eudml.org/doc/298042},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Sharma, Rajendra K.
AU - Mittal, Gaurav
TI - On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 1
EP - 10
AB - We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$.
LA - eng
KW - unit group; finite field; Wedderburn decomposition
UR - http://eudml.org/doc/298042
ER -

References

top
  1. Creedon, L., Gildea, J., 10.4153/CMB-2010-098-5, Can. Math. Bull. 54 (2011), 237-243. (2011) Zbl1242.16033MR2884238DOI10.4153/CMB-2010-098-5
  2. Ferraz, R. A., 10.1080/00927870802103503, Commun. Algebra 36 (2008), 3191-3199. (2008) Zbl1156.16019MR2441107DOI10.1080/00927870802103503
  3. Gildea, J., 10.1007/s10587-011-0071-5, Czech. Math. J. 61 (2011), 531-539. (2011) Zbl1237.16035MR2905421DOI10.1007/s10587-011-0071-5
  4. Gildea, J., Monaghan, F., Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math. 11 (2011), 46-58. (2011) Zbl1256.16023MR2868359
  5. Hurley, T., Group rings and rings of matrices, Int. J. Pure Appl. Math. 31 (2006), 319-335. (2006) Zbl1136.20004MR2266951
  6. Hurley, T., Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), 431-463. (2009) Zbl1173.94452MR2490664
  7. Lidl, R., Niederreiter, H., 10.1017/CBO9781139172769, Cambridge University Press, Cambridge (1994). (1994) Zbl0820.11072MR1294139DOI10.1017/CBO9781139172769
  8. Maheshwari, S., Sharma, R. K., 10.13069/jacodesmath.83854, J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. (2016) Zbl1429.16027MR3450932DOI10.13069/jacodesmath.83854
  9. Makhijani, N., Sharma, R. K., Srivastava, J. B., A note on units of F p m [ D 2 p m ] , Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. (2014) Zbl1324.16035MR3285078
  10. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1142/S0219498813500904, Int. J. Group Theory 3 (2014), 13-16. (2014) Zbl1335.16028MR3181770DOI10.1142/S0219498813500904
  11. Makhijani, N., Sharma, R. K., Srivastava, J. B., The unit group of F q [ D 30 ] , Serdica Math. J. 41 (2015), 185-198. (2015) MR3363601
  12. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.14232/actasm-014-311-2, Acta Sci. Math. 82 (2016), 29-43. (2016) Zbl1399.16065MR3526335DOI10.14232/actasm-014-311-2
  13. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.2989/16073606.2015.1024410, Quaest. Math. 39 (2016), 9-28. (2016) Zbl1445.16023MR3483353DOI10.2989/16073606.2015.1024410
  14. Makhijani, N., Sharma, R. K., Srivastava, J. B., 10.1016/j.joems.2014.08.001, J. Egypt. Math. Soc. 24 (2016), 5-7. (2016) Zbl1336.16042MR3456857DOI10.1016/j.joems.2014.08.001
  15. Mittal, G., Sharma, R., 10.21136/MB.2021.0116-19, Math. Bohem. 146 (2021), 429-455. (2021) MR4336549DOI10.21136/MB.2021.0116-19
  16. Perlis, S., Walker, G. L., 10.1090/S0002-9947-1950-0034758-3, Trans. Am. Math. Soc. 68 (1950), 420-426. (1950) Zbl0038.17301MR0034758DOI10.1090/S0002-9947-1950-0034758-3
  17. Milies, C. Polcino, Sehgal, S. K., Sudarshan, S., 10.1007/978-94-010-0405-3, Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl0997.20003MR1896125DOI10.1007/978-94-010-0405-3
  18. Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of F A 4 , Publ. Math. 71 (2007), 21-26. (2007) Zbl1135.16033MR2340031
  19. Sharma, R. K., Srivastava, J. B., Khan, M., The unit group of F S 3 , Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 129-142. (2007) Zbl1135.16034MR2368934
  20. Sharma, R. K., Yadav, P., Unit group of algebra of circulant matrices, Int. J. Group Theory 2 (2013), 1-6. (2013) Zbl1306.16037MR3053357
  21. Tang, G., Wei, Y., Li, Y., 10.1007/s10587-014-0090-0, Czech. Math. J. 64 (2014), 149-157. (2014) Zbl1340.16040MR3247451DOI10.1007/s10587-014-0090-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.