A cancellative amenable ascending union of nonamenable semigroups

John Donnelly

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 687-690
  • ISSN: 0011-4642

Abstract

top
We construct an example of a cancellative amenable semigroup which is the ascending union of semigroups, none of which are amenable.

How to cite

top

Donnelly, John. "A cancellative amenable ascending union of nonamenable semigroups." Czechoslovak Mathematical Journal 61.3 (2011): 687-690. <http://eudml.org/doc/196528>.

@article{Donnelly2011,
abstract = {We construct an example of a cancellative amenable semigroup which is the ascending union of semigroups, none of which are amenable.},
author = {Donnelly, John},
journal = {Czechoslovak Mathematical Journal},
keywords = {amenability; semigroups; ascending union; amenability; semigroup; group; ascending union},
language = {eng},
number = {3},
pages = {687-690},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A cancellative amenable ascending union of nonamenable semigroups},
url = {http://eudml.org/doc/196528},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Donnelly, John
TI - A cancellative amenable ascending union of nonamenable semigroups
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 687
EP - 690
AB - We construct an example of a cancellative amenable semigroup which is the ascending union of semigroups, none of which are amenable.
LA - eng
KW - amenability; semigroups; ascending union; amenability; semigroup; group; ascending union
UR - http://eudml.org/doc/196528
ER -

References

top
  1. Banach, S., Sur la problème de la mesure, Fundamenta math. 4 (1923), 7-33. (1923) 
  2. Day, M. M., Amenable semigroups, Ill. J. Math. 1 (1957), 509-544. (1957) Zbl0078.29402MR0092128
  3. Day, M. M., Semigroups and amenability, (Semigroups, Proc. Sympos. Detroit, Michigan, 1968), pp. 5-53, Academic Press, New York (1969). (1969) Zbl0191.01801MR0265502
  4. Donnelly, J., 10.1142/S0218196707003524, Int. J. Algebra Comput. 17 (2007), 179-185. (2007) Zbl1126.20042MR2300412DOI10.1142/S0218196707003524
  5. Følner, E., On groups with full Banach mean value, Math. Scand. 3 (1955), 243-254. (1955) MR0079220
  6. Frey, A. H., Studies on Amenable Semigroups, PhD thesis, University of Washington (1960). (1960) MR2613109
  7. Grigorchuk, R. I., Growth and amenability of a semigroup and its group of quotients, Semigroup theory and its related fields, Proc. Int. Symp., Kyoto/Jap. (1990), 103-108. (1990) Zbl0726.43002MR1099852
  8. Grigorchuk, R. I., 10.1007/BF01126860, Ukr. Math. J. 31 (1980), 388-393. (1980) Zbl0447.28010MR0552478DOI10.1007/BF01126860
  9. Grigorchuk, R. I., Stepin, A. M., On amenability of semigroups with cancellation, Mosc. Univ. Math. Bull. 53 (1998), 7-11. (1998) Zbl1023.43001MR1708545
  10. Hausdorff, F., Grundzüge der Mengenlehre, Leipzig (1914). (1914) 
  11. Hochster, M., 10.1090/S0002-9939-1969-0240223-0, Proc. Am. Math. Soc. 21 (1969), 363-364. (1969) Zbl0174.30801MR0240223DOI10.1090/S0002-9939-1969-0240223-0
  12. Klawe, M., 10.2140/pjm.1977.73.91, Pac. J. Math. 73 (1977), 91-106. (1977) Zbl0385.43001MR0470609DOI10.2140/pjm.1977.73.91
  13. Namioka, I., Følner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 18-28. (1964) Zbl0138.38001MR0180832
  14. Neumann, J. Von, Zur allgemeinen Theorie des Masses, Fundamenta 13 (1929), 73-116. (1929) 
  15. Olśhanskii, A. Yu., 10.1070/RM1980v035n04ABEH001876, Russ. Math. Surv. 35 (1980), 180-181. (1980) MR0586204DOI10.1070/RM1980v035n04ABEH001876
  16. Sorenson, J., Existence of Measures that are Invariant Under a Semigroup of Transformations, PhD thesis, Purdue University (1966). (1966) MR2616074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.