Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Decomposition of analytic measures on groups and measure spaces

Nakhlé Asmar, Stephen Montgomery-Smith (2001)

Studia Mathematica

We consider an arbitrary locally compact abelian group G, with an ordered dual group Γ, acting on a space of measures. Under suitable conditions, we define the notion of analytic measures using the representation of G and the order on Γ. Our goal is to study analytic measures by applying a new transference principle for subspaces of measures, along with results from probability and Littlewood-Paley theory. As a consequence, we derive new properties of analytic measures as well as extensions of previous...

Dirichlet series induced by the Riemann zeta-function

Jun-ichi Tanaka (2008)

Studia Mathematica

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ( a p , s ) = p ( 1 - a p p - s ) - 1 for a p in ω . Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.

Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program

Khalid Koufany, Bent Ørsted (1996)

Annales de l'institut Fourier

For the scalar holomorphic discrete series representations of SU ( 2 , 2 ) and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside SU ( 2 , 2 ) . We construct a Cayley transform between the Ol’shanskiĭ semigroup having U ( 1 , 1 ) as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for SU ( 2 , 2 ) . This allows calculating the composition series in terms of harmonic analysis on U ( 1 , 1 ) . In particular we show that the Ol’shanskiĭ Hardy space for U ( 1 , 1 ) is different...

Hahn's Embedding Theorem for orders and harmonic analysis on groups with ordered duals

Nakhlé Asmar, Stephen Montgomery-Smith (1996)

Colloquium Mathematicae

Let G be a locally compact abelian group whose dual group Γ contains a Haar measurable order P. Using the order P we define the conjugate function operator on L p ( G ) , 1 ≤ p < ∞, as was done by Helson [7]. We will show how to use Hahn’s Embedding Theorem for orders and the ergodic Hilbert transform to study the conjugate function. Our approach enables us to define a filtration of the Borel σ-algebra on G, which in turn will allow us to introduce tools from martingale theory into the analysis on groups...

On a weak type (1,1) inequality for a maximal conjugate function

Nakhlé Asmar, Stephen Montgomery-Smith (1997)

Studia Mathematica

In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of H p spaces for 0 < p < ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.

Currently displaying 1 – 20 of 21

Page 1 Next