On the metric theory of the Lüroth expansions of real numbers

Tibor Šalát

Czechoslovak Mathematical Journal (1968)

  • Volume: 18, Issue: 3, page 489-522
  • ISSN: 0011-4642

How to cite

top

Šalát, Tibor. "Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen." Czechoslovak Mathematical Journal 18.3 (1968): 489-522. <http://eudml.org/doc/12427>.

@article{Šalát1968,
author = {Šalát, Tibor},
journal = {Czechoslovak Mathematical Journal},
keywords = {metric theory; Lüroth expansions of real numbers; Hausdorff dimension},
language = {ger},
number = {3},
pages = {489-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen},
url = {http://eudml.org/doc/12427},
volume = {18},
year = {1968},
}

TY - JOUR
AU - Šalát, Tibor
TI - Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen
JO - Czechoslovak Mathematical Journal
PY - 1968
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 18
IS - 3
SP - 489
EP - 522
LA - ger
KW - metric theory; Lüroth expansions of real numbers; Hausdorff dimension
UR - http://eudml.org/doc/12427
ER -

References

top
  1. O. Perron, Irrationalzahlen, De Gruyter, Berlin-Leipzig, 1921. (1921) MR0115985
  2. A. Rényi, A számjegyek eloszlása valós számok Cantor-féle elöállításaiban, Mat. Lap. 7, (1956), 77-100. (1956) MR0099968
  3. P. Erdös A. Rényi, 10.1007/BF02063287, Acta math. acad. sci. Hung. X (1959), 21-29. (1959) MR0107631DOI10.1007/BF02063287
  4. P. Erdös A. Rényi, On Cantor’s series with convergent ( 1 q n ) , Ann. Univ. Sci. Budap. de Rol. Eötvös nom. II (1959), 93-109. (1959) MR0126414
  5. P. Erdös A. Rényi P. Szüsz, On Engel's and Sylvester's series, Ann. Univ. Sci. Budap. de Roi. Eötvös nom. I (1958), 7-- 32. (1958) MR0102496
  6. A. Rényi, A new approach to the theory of Engel's series, Ann. Univ. Sci. Budap. de Rol. Eötvös nom. V (1962), 25-32. (1962) MR0150123
  7. Т. Šalát, Cantorsche Entwicklungen der reellen Zahlen und das Hausdorffsche Mass, Publ. Math. Inst. Hung. Acad. Sci. VI (1961), 15-41. (1961) MR0147465
  8. T. Šalát, Über die Cantorschen Reihen, Czechosl. Math. J. 18 (93) (1968), 25-56. (1968) MR0223305
  9. L. Holzer, Zur Bestimmung des Lebesgueschen Masses linearer Punktmengen, deren Elemente durch systematische Entwicklungen gegeben sind, Sitzungsberichte Akad. der Wissensch. in Wien, Mat.-naturwis. Klasse, Abl. IIa, 137 (1928), 1, 421-453. (1928) 
  10. T. Šalát, О мере Хаусдорфа линейных множеств, Czechosl. Math. J. II (86) (1961), 24-56. (1961) 
  11. К. Knopp, 10.1007/BF01206618, Math. Ann. 95 (1926), 409-426. (1926) MR1512285DOI10.1007/BF01206618
  12. A. Rényi, Wahrscheinlichkeitsrechnung, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962. (1962) MR0474442
  13. K. Knopp, Theorie und Anwendung der unendlichen Reihen, 1931. Zbl0842.40001
  14. A. Хинчин, Цепные дроби, Москва, 1961. (1961) Zbl1160.68305
  15. S. Hartman, Quelques propriétés ergodiques des fractions continues, Studia Math. ХII (1951), 271-278. (1951) Zbl0044.12402MR0046584
  16. T.Šalát, Remarks on the ergodic theory of the continued fractions, Mat. čas. SAV 17 (1967), 121-130. (1967) Zbl0166.05703MR0226244
  17. A. Chinčin, Metrische Kettenbruchprobleme, Comp. Math. I (1935), 361-382. (1935) 
  18. W. Specht, Elementare Beweise der Primzahlsätze, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. (1956) Zbl0072.03103MR0086829
  19. V. Jarník, Zur metrischen Theorie der diophantischen Approximationen, Prace matem.- fizyczne XXXVI (1928-1929), 91-106. (1928) 
  20. T. Šalát, A remark on normal numbers, Revue roumaine de math. pures et appl. XI (1966), 53-56. (1966) MR0201386
  21. К. Kuratowski, Topologie I, Warszawa, 1958. (1958) 
  22. H. H. Ostmann, Additive Zahlentheorie I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956. (1956) Zbl0072.03101MR0098721

Citations in EuDML Documents

top
  1. János Galambos, Some remarks on the Lüroth expansion
  2. Arnold Knopfmacher, John Knopfmacher, Metric properties of some special p-adic series expansions
  3. Luming Shen, Kui Fang, The fractional dimensional theory in Lüroth expansion
  4. Fritz Schweiger, Ergodische Theorie der Engelschen und Sylvesterschen Reihen
  5. Chunyun Cao, Jun Wu, Zhenliang Zhang, The efficiency of approximating real numbers by Lüroth expansion
  6. János Galambos, On infinite series representations of real numbers
  7. Jose Barrionuevo, Robert M. Burton, Karma Dajani, Cor Kraaikamp, Ergodic properties of generalized Lüroth series

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.