How to solve problems with uncertain input data?

Ivan Hlaváček

Pokroky matematiky, fyziky a astronomie (1999)

  • Volume: 44, Issue: 2, page 111-116
  • ISSN: 0032-2423

How to cite

top

Hlaváček, Ivan. "Jak řešit úlohy s nejistými vstupními daty?." Pokroky matematiky, fyziky a astronomie 44.2 (1999): 111-116. <http://eudml.org/doc/196645>.

@article{Hlaváček1999,
author = {Hlaváček, Ivan},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {numerical analysis; reliable solution},
language = {cze},
number = {2},
pages = {111-116},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Jak řešit úlohy s nejistými vstupními daty?},
url = {http://eudml.org/doc/196645},
volume = {44},
year = {1999},
}

TY - JOUR
AU - Hlaváček, Ivan
TI - Jak řešit úlohy s nejistými vstupními daty?
JO - Pokroky matematiky, fyziky a astronomie
PY - 1999
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 44
IS - 2
SP - 111
EP - 116
LA - cze
KW - numerical analysis; reliable solution
UR - http://eudml.org/doc/196645
ER -

References

top
  1. Friedman, A., Stochastic Differential Equations and Applications, Vols. I, II, Academic Press 1976. (1976) 
  2. Haug, E. J., Arora, J. S., Applied Optimal Design, J. Wiley, New York 1979. (Ruský překlad Mir, Moskva 1983.) (1979) 
  3. Haug, E. J., Choi, K. K., Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando 1986. (Ruský překlad: Mir, Moskva 1988.) (1986) Zbl0618.73106MR0860040
  4. Hlaváček, I, Reliable solution of elliptic boundary value problems with respect to uncertain data, Nonlinear Analysis. Theory, Meth. & Appls. 30 (1997), 3879–3890. Proc. 2nd World Congress of Nonl. Analysts. (1997) Zbl0896.35034MR1602891
  5. Hlaváček, I., Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients, J. Math. Anal. Appl. 212 (1997), 452–466. (1997) Zbl0919.35047MR1464890
  6. Hlaváček, I., Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function, Appl. Math. 41 (1996), 447–466. (1996) Zbl0870.65095MR1415251
  7. Hlaváček, I., Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function, Appl. Math. 43 (1998), 223–237. (1998) Zbl1042.74533MR1620616
  8. Hlaváček, I., Reliable solution of a unilateral contact problem with friction, considering uncertain data, Numer. Lin. Algebra w. Appls. (V tisku.) Zbl0968.35116
  9. Hlaváček, I., Reliable solution of an elasto-plastic torsion problem, J. Math. Anal. Appl. (V redakčním řízení.) Zbl1016.74008
  10. Hlaváček, I., Reliable solution of linear parabolic problems with uncertain coefficients, Z. angew. Math. Mech. 79 (1999), 291–301. (1999) Zbl0928.35016MR1695286
  11. Hlaváček, I., Chleboun, J., Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor, (V redakčním řízení.) Zbl0971.74041
  12. Holden, H., Øksendal, B., Ubøe, J., Zhang, T., Stochastic Partial Differential Equations, Birkhäuser; Boston, Basel, Berlin 1996. (1996) Zbl0860.60045MR1408433
  13. Chleboun, J., Reliable solution for 1D quasilinear elliptic equation with uncertain coefficients, Zasláno do J. Math. Anal. Appl. Zbl0944.35027
  14. Chleboun, J., On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: sensitivity analysis and numerical examples, (Připraveno k tisku.) Zbl1002.35041
  15. Ikeda, N., Watanabe, S., Stochastic Differential Equations and Diffusion Processes (2nd edition), North-Holland/Kodansha 1989. (1989) Zbl0684.60040MR1011252
  16. Litvinov, V. G., Optimizacija v eliptičeskich krajevych zadačach s primeněnijami k mechanike, Nauka, Moskva 1987. (1987) 
  17. Natke, H. G., Zamirowski, M., ARMAX Modelling in Structural Dynamics, Z. angew. Math. Mech. 72 (1992), 631–637; 73 (1993), 217–221. (1992) Zbl0778.93015
  18. Nedoma, J., Inaccurate linear equation system with a restricted-rank error matrix, Linear and Multilinear Algebra 44 (1998), 29–44. (1998) Zbl0907.15004MR1638938
  19. Rohn, J., Positive definiteness and stability of interval matrices, SIAM J. Matrix Anal. Appl. 15 (1994), 175–184. (1994) Zbl0796.65065MR1257627
  20. Walsh, J. B., An introduction to stochastic partial differential equations, In: Carmona, R., Kesten, H., Walsh, J. B. (ed.), École d’Été de Probabilité de Saint Flour XIV-1984. Springer LNM 1180, str. 265–437. (1984) MR0876085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.