Two valued measure and some new double sequence spaces in -normed spaces
Pratulananda Das; Ekrem Savaş; Santanu Bhunia
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 3, page 809-825
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDas, Pratulananda, Savaş, Ekrem, and Bhunia, Santanu. "Two valued measure and some new double sequence spaces in $2$-normed spaces." Czechoslovak Mathematical Journal 61.3 (2011): 809-825. <http://eudml.org/doc/196891>.
@article{Das2011,
abstract = {The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.},
author = {Das, Pratulananda, Savaş, Ekrem, Bhunia, Santanu},
journal = {Czechoslovak Mathematical Journal},
keywords = {convergence; $\mu $-statistical convergence; convergence in $\mu $-density; condition (APO$_\{2\}$); 2-norm; 2-normed space; paranorm; paranormed space; Orlicz function; sequence space; convergence; -statistical convergence; convergence in -density; condition (APO); 2-norm; paranorm; paranormed space; Orlicz function},
language = {eng},
number = {3},
pages = {809-825},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two valued measure and some new double sequence spaces in $2$-normed spaces},
url = {http://eudml.org/doc/196891},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Das, Pratulananda
AU - Savaş, Ekrem
AU - Bhunia, Santanu
TI - Two valued measure and some new double sequence spaces in $2$-normed spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 809
EP - 825
AB - The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.
LA - eng
KW - convergence; $\mu $-statistical convergence; convergence in $\mu $-density; condition (APO$_{2}$); 2-norm; 2-normed space; paranorm; paranormed space; Orlicz function; sequence space; convergence; -statistical convergence; convergence in -density; condition (APO); 2-norm; paranorm; paranormed space; Orlicz function
UR - http://eudml.org/doc/196891
ER -
References
top- Bhunia, S., Das, P., 10.1007/s10474-010-0005-y, Acta Math. Hung. 130 (2011), 167-187. (2011) MR2754393DOI10.1007/s10474-010-0005-y
- Colak, R., Et, M., Malkowsky, E., 10.14492/hokmj/1285766222, Hokkaido Math. J. 34 (2005), 265-276. (2005) Zbl1099.46004MR2158997DOI10.14492/hokmj/1285766222
- Connor, J., 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373-385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
- Connor, J., -type summability methods, Cauchy criteria, -sets and statistical convergence, Proc. Am. Math. Soc. 115 (1992), 319-327. (1992) Zbl0765.40002MR1095221
- Das, P., Malik, P., 10.14321/realanalexch.33.2.0351, Real Anal. Exch. 33 (2008), 351-363. (2008) MR2458252DOI10.14321/realanalexch.33.2.0351
- Das, P., Kostyrko, P., Wilczyński, W., Malik, P., 10.2478/s12175-008-0096-x, Math. Slovaca 58 (2008), 605-620. (2008) Zbl1199.40026MR2434680DOI10.2478/s12175-008-0096-x
- Das, P., Bhunia, S., 10.1007/s10587-009-0081-8, Czechoslovak Math. J. 59(134) (2009), 1141-1155. (2009) MR2563584DOI10.1007/s10587-009-0081-8
- Das, P., Malik, P., Savaş, E., 10.1016/j.amc.2009.06.036, Appl. Math. Comput. 215 (2009), 1030-1034. (2009) MR2568958DOI10.1016/j.amc.2009.06.036
- Fast, H., 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- Fridy, J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
- Gähler, S., 10.1002/mana.19630260109, Math. Nachr. 26 (1963), 115-148 German. (1963) MR0162224DOI10.1002/mana.19630260109
- Gähler, S., 2-normed spaces, Math. Nachr. 28 (1964), 1-43. (1964)
- Gähler, S., Siddiqi, A. H., Gupta, S. C., Contributions to non-Archimedean functional analysis, Math. Nachr. 69 (1975), 162-171. (1975) MR0390798
- Gürdal, M., Pehlivan, S., Statistical convergence in -normed spaces, Southeast Asian Bull. Math. 33 (2009), 257-264. (2009) MR2521861
- Gürdal, M., Sahiner, A., Açik, I., 10.1016/j.na.2009.01.030, Nolinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1654-1661. (2009) MR2524378DOI10.1016/j.na.2009.01.030
- Krasnosel'skij, M. A., Rutiskij, Y. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. Groningen (1961). (1961) MR0126722
- Maddox, I. J., 10.1017/S0305004100065968, Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
- Maddox, I. J., Elements of Functional Analysis, Cambridge University Press Cambridge (1970). (1970) Zbl0193.08601MR0390692
- Móricz, F., 10.1007/s00013-003-0506-9, Arch. Math. 81 (2003), 82-89. (2003) MR2002719DOI10.1007/s00013-003-0506-9
- Mursaleen, Edely, O. H. H., 10.1016/j.jmaa.2003.08.004, J. Math. Anal. Appl. 288 (2003), 223-231. (2003) Zbl1032.40001MR2019757DOI10.1016/j.jmaa.2003.08.004
- Nuray, F., Ruckle, W. H., 10.1006/jmaa.2000.6778, J. Math. Anal. Appl. 245 (2000), 513-527. (2000) Zbl0955.40001MR1758553DOI10.1006/jmaa.2000.6778
- Parashar, S. D., Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428. (1994) Zbl0802.46020MR1272814
- Pringsheim, A., 10.1007/BF01448977, Math. Ann. 53 (1900), 289-321 German. (1900) MR1511092DOI10.1007/BF01448977
- Ruckle, W. H., 10.4153/CJM-1973-102-9, Canad. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731DOI10.4153/CJM-1973-102-9
- Sahiner, A., Gürdal, M., Saltan, S., Gunawan, H., 10.11650/twjm/1500404879, Taiwanese J. Math. 11 (2007), 1477-1484. (2007) MR2368664DOI10.11650/twjm/1500404879
- Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
- Savaş, E., Mursaleen, 10.1016/j.ins.2003.09.005, Inf. Sci. 162 (2004), 183-192. (2004) MR2076238DOI10.1016/j.ins.2003.09.005
- Savaş, E., Patterson, R. F., An Orlicz extension of some new sequences spaces, Rend. Ist. Mat. Univ. Trieste 37 (2005), 145-154. (2005) MR2227053
- Savaş, E., Rhoades, B. E., Double absolute summability factor theorems and applications, Nonlinear Anal., Theory Methods Appl. 69 (2008), 189-200. (2008) MR2417863
- Schoenberg, I. J., 10.2307/2308747, Am. Math. Mon. 66 (1959), 361-375, 562-563. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.