Two valued measure and some new double sequence spaces in 2 -normed spaces

Pratulananda Das; Ekrem Savaş; Santanu Bhunia

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 809-825
  • ISSN: 0011-4642

Abstract

top
The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in 2 -normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.

How to cite

top

Das, Pratulananda, Savaş, Ekrem, and Bhunia, Santanu. "Two valued measure and some new double sequence spaces in $2$-normed spaces." Czechoslovak Mathematical Journal 61.3 (2011): 809-825. <http://eudml.org/doc/196891>.

@article{Das2011,
abstract = {The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.},
author = {Das, Pratulananda, Savaş, Ekrem, Bhunia, Santanu},
journal = {Czechoslovak Mathematical Journal},
keywords = {convergence; $\mu $-statistical convergence; convergence in $\mu $-density; condition (APO$_\{2\}$); 2-norm; 2-normed space; paranorm; paranormed space; Orlicz function; sequence space; convergence; -statistical convergence; convergence in -density; condition (APO); 2-norm; paranorm; paranormed space; Orlicz function},
language = {eng},
number = {3},
pages = {809-825},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two valued measure and some new double sequence spaces in $2$-normed spaces},
url = {http://eudml.org/doc/196891},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Das, Pratulananda
AU - Savaş, Ekrem
AU - Bhunia, Santanu
TI - Two valued measure and some new double sequence spaces in $2$-normed spaces
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 809
EP - 825
AB - The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in $2$-normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.
LA - eng
KW - convergence; $\mu $-statistical convergence; convergence in $\mu $-density; condition (APO$_{2}$); 2-norm; 2-normed space; paranorm; paranormed space; Orlicz function; sequence space; convergence; -statistical convergence; convergence in -density; condition (APO); 2-norm; paranorm; paranormed space; Orlicz function
UR - http://eudml.org/doc/196891
ER -

References

top
  1. Bhunia, S., Das, P., 10.1007/s10474-010-0005-y, Acta Math. Hung. 130 (2011), 167-187. (2011) MR2754393DOI10.1007/s10474-010-0005-y
  2. Colak, R., Et, M., Malkowsky, E., 10.14492/hokmj/1285766222, Hokkaido Math. J. 34 (2005), 265-276. (2005) Zbl1099.46004MR2158997DOI10.14492/hokmj/1285766222
  3. Connor, J., 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373-385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
  4. Connor, J., R -type summability methods, Cauchy criteria, P -sets and statistical convergence, Proc. Am. Math. Soc. 115 (1992), 319-327. (1992) Zbl0765.40002MR1095221
  5. Das, P., Malik, P., 10.14321/realanalexch.33.2.0351, Real Anal. Exch. 33 (2008), 351-363. (2008) MR2458252DOI10.14321/realanalexch.33.2.0351
  6. Das, P., Kostyrko, P., Wilczyński, W., Malik, P., 10.2478/s12175-008-0096-x, Math. Slovaca 58 (2008), 605-620. (2008) Zbl1199.40026MR2434680DOI10.2478/s12175-008-0096-x
  7. Das, P., Bhunia, S., 10.1007/s10587-009-0081-8, Czechoslovak Math. J. 59(134) (2009), 1141-1155. (2009) MR2563584DOI10.1007/s10587-009-0081-8
  8. Das, P., Malik, P., Savaş, E., 10.1016/j.amc.2009.06.036, Appl. Math. Comput. 215 (2009), 1030-1034. (2009) MR2568958DOI10.1016/j.amc.2009.06.036
  9. Fast, H., 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  10. Fridy, J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
  11. Gähler, S., 10.1002/mana.19630260109, Math. Nachr. 26 (1963), 115-148 German. (1963) MR0162224DOI10.1002/mana.19630260109
  12. Gähler, S., 2-normed spaces, Math. Nachr. 28 (1964), 1-43. (1964) 
  13. Gähler, S., Siddiqi, A. H., Gupta, S. C., Contributions to non-Archimedean functional analysis, Math. Nachr. 69 (1975), 162-171. (1975) MR0390798
  14. Gürdal, M., Pehlivan, S., Statistical convergence in 2 -normed spaces, Southeast Asian Bull. Math. 33 (2009), 257-264. (2009) MR2521861
  15. Gürdal, M., Sahiner, A., Açik, I., 10.1016/j.na.2009.01.030, Nolinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1654-1661. (2009) MR2524378DOI10.1016/j.na.2009.01.030
  16. Krasnosel'skij, M. A., Rutiskij, Y. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd. Groningen (1961). (1961) MR0126722
  17. Maddox, I. J., 10.1017/S0305004100065968, Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
  18. Maddox, I. J., Elements of Functional Analysis, Cambridge University Press Cambridge (1970). (1970) Zbl0193.08601MR0390692
  19. Móricz, F., 10.1007/s00013-003-0506-9, Arch. Math. 81 (2003), 82-89. (2003) MR2002719DOI10.1007/s00013-003-0506-9
  20. Mursaleen, Edely, O. H. H., 10.1016/j.jmaa.2003.08.004, J. Math. Anal. Appl. 288 (2003), 223-231. (2003) Zbl1032.40001MR2019757DOI10.1016/j.jmaa.2003.08.004
  21. Nuray, F., Ruckle, W. H., 10.1006/jmaa.2000.6778, J. Math. Anal. Appl. 245 (2000), 513-527. (2000) Zbl0955.40001MR1758553DOI10.1006/jmaa.2000.6778
  22. Parashar, S. D., Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428. (1994) Zbl0802.46020MR1272814
  23. Pringsheim, A., 10.1007/BF01448977, Math. Ann. 53 (1900), 289-321 German. (1900) MR1511092DOI10.1007/BF01448977
  24. Ruckle, W. H., 10.4153/CJM-1973-102-9, Canad. J. Math. 25 (1973), 973-978. (1973) Zbl0267.46008MR0338731DOI10.4153/CJM-1973-102-9
  25. Sahiner, A., Gürdal, M., Saltan, S., Gunawan, H., 10.11650/twjm/1500404879, Taiwanese J. Math. 11 (2007), 1477-1484. (2007) MR2368664DOI10.11650/twjm/1500404879
  26. Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
  27. Savaş, E., Mursaleen, 10.1016/j.ins.2003.09.005, Inf. Sci. 162 (2004), 183-192. (2004) MR2076238DOI10.1016/j.ins.2003.09.005
  28. Savaş, E., Patterson, R. F., An Orlicz extension of some new sequences spaces, Rend. Ist. Mat. Univ. Trieste 37 (2005), 145-154. (2005) MR2227053
  29. Savaş, E., Rhoades, B. E., Double absolute summability factor theorems and applications, Nonlinear Anal., Theory Methods Appl. 69 (2008), 189-200. (2008) MR2417863
  30. Schoenberg, I. J., 10.2307/2308747, Am. Math. Mon. 66 (1959), 361-375, 562-563. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.