Two valued measure and summability of double sequences
Pratulananda Das; Santanu Bhunia
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 1141-1155
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDas, Pratulananda, and Bhunia, Santanu. "Two valued measure and summability of double sequences." Czechoslovak Mathematical Journal 59.4 (2009): 1141-1155. <http://eudml.org/doc/37984>.
@article{Das2009,
abstract = {In this paper, following the methods of Connor [connor], we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely [moe]) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor [jc]. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$).},
author = {Das, Pratulananda, Bhunia, Santanu},
journal = {Czechoslovak Mathematical Journal},
keywords = {double sequences; $\mu $-statistical convergence; divergence and Cauchy criteria; convergence; divergence and Cauchy criteria in $\mu $-density; condition (APO$_2)$; double sequence; -statistical convergence; divergence criteria; Cauchy criteria; convergence; -density; condition (APO},
language = {eng},
number = {4},
pages = {1141-1155},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two valued measure and summability of double sequences},
url = {http://eudml.org/doc/37984},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Das, Pratulananda
AU - Bhunia, Santanu
TI - Two valued measure and summability of double sequences
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1141
EP - 1155
AB - In this paper, following the methods of Connor [connor], we extend the idea of statistical convergence of a double sequence (studied by Muresaleen and Edely [moe]) to $\mu $-statistical convergence and convergence in $\mu $-density using a two valued measure $\mu $. We also apply the same methods to extend the ideas of divergence and Cauchy criteria for double sequences. We then introduce a property of the measure $\mu $ called the (APO$_2$) condition, inspired by the (APO) condition of Connor [jc]. We mainly investigate the interrelationships between the two types of convergence, divergence and Cauchy criteria and ultimately show that they become equivalent if and only if the measure $\mu $ has the condition (APO$_2$).
LA - eng
KW - double sequences; $\mu $-statistical convergence; divergence and Cauchy criteria; convergence; divergence and Cauchy criteria in $\mu $-density; condition (APO$_2)$; double sequence; -statistical convergence; divergence criteria; Cauchy criteria; convergence; -density; condition (APO
UR - http://eudml.org/doc/37984
ER -
References
top- Balcerzak, M., Dems, K., 10.14321/realanalexch.30.1.0267, Real Anal. Exchange 30 (2004), 267-276. (2004) MR2127531DOI10.14321/realanalexch.30.1.0267
- Connor, J., 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373-385. (1990) MR1085803DOI10.1524/anly.1990.10.4.373
- Connor, J., -type summability methods, Cauchy criterion, -sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319-327. (1992) MR1095221
- Connor, J., Fridy, J. A., Orhan, C., 10.1016/j.jmaa.2005.07.067, J. Math. Anal. Appl. 321 (2006), 515-523. (2006) Zbl1092.40001MR2241135DOI10.1016/j.jmaa.2005.07.067
- Das, P., Malik, P., 10.14321/realanalexch.33.2.0351, Real Anal. Exchange 33 (2008), 351-364. (2008) MR2458252DOI10.14321/realanalexch.33.2.0351
- Das, P., Kostyrko, P., Wilczyński, W., Malik, P., 10.2478/s12175-008-0096-x, Math. Slovaca 58 (2008), 605-620. (2008) Zbl1199.40026MR2434680DOI10.2478/s12175-008-0096-x
- Dems, K., On -Cauchy sequences, Real Anal. Exchange 30 (2004), 123-128. (2004) MR2126799
- Fast, H., 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241-244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- Fridy, J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
- Kostyrko, P., Šalát, T., Wilczyński, W., -Convergence, Real Anal. Exchange 26 (2000/2001), 669-686. (2000) MR1844385
- Móricz, F., 10.1007/s00013-003-0506-9, Arch. Math. 81 (2003), 82-89. (2003) MR2002719DOI10.1007/s00013-003-0506-9
- Muresaleen, Edely, Osama H. H., 10.1016/j.jmaa.2003.08.004, J. Math. Anal. Appl. 288 (2003), 223-231. (2003) MR2019757DOI10.1016/j.jmaa.2003.08.004
- Nuray, F., Ruckle, W. H., 10.1006/jmaa.2000.6778, J. Math. Anal. Appl. 245 (2000), 513-527. (2000) Zbl0955.40001MR1758553DOI10.1006/jmaa.2000.6778
- Pringsheim, A., 10.1007/BF01448977, Math. Ann. 53 (1900), 289-321. (1900) MR1511092DOI10.1007/BF01448977
- Savas, E., Muresaleen, 10.1016/j.ins.2003.09.005, Information Sciences 162 (2004), 183-192. (2004) MR2076238DOI10.1016/j.ins.2003.09.005
- Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
- Schoenberg, I. J., 10.2307/2308747, Amer. Math. Monthly. 66 (1959), 361-375. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.