A Pettis-type integral and applications to transition semigroups
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 437-459
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKunze, Markus. "A Pettis-type integral and applications to transition semigroups." Czechoslovak Mathematical Journal 61.2 (2011): 437-459. <http://eudml.org/doc/196928>.
@article{Kunze2011,
abstract = {Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.},
author = {Kunze, Markus},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis-type integral; dual pairs; Laplace transform; transition semigroup; Pettis-type integral; dual pairs; Laplace transform; transition semigroup},
language = {eng},
number = {2},
pages = {437-459},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Pettis-type integral and applications to transition semigroups},
url = {http://eudml.org/doc/196928},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Kunze, Markus
TI - A Pettis-type integral and applications to transition semigroups
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 437
EP - 459
AB - Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.
LA - eng
KW - Pettis-type integral; dual pairs; Laplace transform; transition semigroup; Pettis-type integral; dual pairs; Laplace transform; transition semigroup
UR - http://eudml.org/doc/196928
ER -
References
top- Arendt, W., 10.11650/twjm/1500407337, Taiwanese J. Math. 5 (2001), 327-295. (2001) Zbl1025.47023MR1832168DOI10.11650/twjm/1500407337
- Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-valued Laplace Transform and Cauchy Problems. Monographs in Mathematics. Vol. 96, Birkhäuser Basel (2001). (2001) MR1886588
- Arendt, W., Nikolski, N., 10.1007/s00209-005-0858-x, Math. Z. 252 (2006), 687-689. (2006) MR2207764DOI10.1007/s00209-005-0858-x
- Bauer, H., Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, Walter de Gruyter Berlin (1968). (1968) Zbl0174.48802MR0239626
- Bonet, J., Cascales, B., 10.1017/S0004972709001154, Bull. Aust. Math. Soc. 81 (2010), 409-413. (2010) MR2639854DOI10.1017/S0004972709001154
- Cerrai, S., 10.1007/BF02573496, Semigroup Forum 49 (1994), 349-367. (1994) MR1293091DOI10.1007/BF02573496
- Davis, W. J., Lindenstrauss, J., 10.1090/S0002-9939-1972-0288560-8, Proc. Am. Math. Soc. 31 (1972), 109-111. (1972) Zbl0256.46025MR0288560DOI10.1090/S0002-9939-1972-0288560-8
- Diestel, J., Uhl, J. J., Vector Measures. Mathematical Surveys and Applications. Vol. 15, Amer. Math. Soc. Providence (1977). (1977) MR0453964
- Farkas, B., 10.1007/s00233-002-0024-2, Semigroup Forum 68 (2004), 329-353. (2004) MR2033232DOI10.1007/s00233-002-0024-2
- Feller, W., 10.2307/1969859, Ann. Math. 57 (1953), 287-308. (1953) Zbl0050.11601MR0054165DOI10.2307/1969859
- Haase, M., The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications. Vol. 169, Birkhäuser Basel (2006). (2006) MR2244037
- Jacob, N., Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups. Vol. I, Imperial College Press London (2001). (2001) MR1873235
- Ali, S. Jaker, Chakraborty, N. D., 10.1007/BF02789840, Anal. Math. 23 (1997), 241-257. (1997) MR1629973DOI10.1007/BF02789840
- Jarchow, H., Locally Convex Spaces, Teubner Stuttgart (1981). (1981) Zbl0466.46001MR0632257
- Jefferies, B., 10.1016/0022-1236(86)90063-7, J. Funct. Anal. 66 (1986), 347-364. (1986) Zbl0589.47043MR0839106DOI10.1016/0022-1236(86)90063-7
- Jefferies, B., 10.1016/0022-1236(87)90065-6, J. Funct. Anal. 73 (1987), 195-215. (1987) Zbl0621.47037MR0890663DOI10.1016/0022-1236(87)90065-6
- Koethe, G., Topological Vector Spaces. Grundlagen der Mathematischen Wissenschaften in Einzeldarstellungen. Vol. 107, Springer Berlin (1969). (1969)
- Kühnemund, F., 10.1007/s00233-002-5000-3, Semigroup Forum 67 (2003), 205-225. (2003) MR1987498DOI10.1007/s00233-002-5000-3
- Kühnemund, F., Neerven, J. M. A. M. van, 10.1007/s00028-003-0078-y, J. Evol. Equ. 4 (2004), 53-73. (2004) MR2047306DOI10.1007/s00028-003-0078-y
- Kunze, M., 10.1007/s00233-009-9174-9, Semigroup Forum 79 (2009), 540-560. (2009) Zbl1192.47040MR2564063DOI10.1007/s00233-009-9174-9
- Lant, T., Thieme, H. R., 10.1007/s00233-006-0636-z, Semigroup Forum 74 (2007), 337-369. (2007) Zbl1146.47030MR2321572DOI10.1007/s00233-006-0636-z
- Musiał, K., 10.4064/sm-64-2-151-174, Stud. Math. 64 (1979), 151-174. (1979) MR0537118DOI10.4064/sm-64-2-151-174
- Pettis, B. J., 10.1090/S0002-9947-1938-1501970-8, Trans. Am. Math. Soc. 44 (1938), 277-304. (1938) Zbl0019.41603MR1501970DOI10.1090/S0002-9947-1938-1501970-8
- Phillips, R. S., 10.1090/S0002-9939-1951-0039922-1, Proc. Am. Math. Soc. 2 (1951), 234-237. (1951) MR0039922DOI10.1090/S0002-9939-1951-0039922-1
- Priola, E., 10.4064/sm-136-3-271-295, Stud. Math. 136 (1999), 271-295. (1999) Zbl0955.47024MR1724248DOI10.4064/sm-136-3-271-295
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.