A Pettis-type integral and applications to transition semigroups

Markus Kunze

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 437-459
  • ISSN: 0011-4642

Abstract

top
Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.

How to cite

top

Kunze, Markus. "A Pettis-type integral and applications to transition semigroups." Czechoslovak Mathematical Journal 61.2 (2011): 437-459. <http://eudml.org/doc/196928>.

@article{Kunze2011,
abstract = {Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.},
author = {Kunze, Markus},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis-type integral; dual pairs; Laplace transform; transition semigroup; Pettis-type integral; dual pairs; Laplace transform; transition semigroup},
language = {eng},
number = {2},
pages = {437-459},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Pettis-type integral and applications to transition semigroups},
url = {http://eudml.org/doc/196928},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Kunze, Markus
TI - A Pettis-type integral and applications to transition semigroups
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 437
EP - 459
AB - Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform.
LA - eng
KW - Pettis-type integral; dual pairs; Laplace transform; transition semigroup; Pettis-type integral; dual pairs; Laplace transform; transition semigroup
UR - http://eudml.org/doc/196928
ER -

References

top
  1. Arendt, W., 10.11650/twjm/1500407337, Taiwanese J. Math. 5 (2001), 327-295. (2001) Zbl1025.47023MR1832168DOI10.11650/twjm/1500407337
  2. Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F., Vector-valued Laplace Transform and Cauchy Problems. Monographs in Mathematics. Vol. 96, Birkhäuser Basel (2001). (2001) MR1886588
  3. Arendt, W., Nikolski, N., 10.1007/s00209-005-0858-x, Math. Z. 252 (2006), 687-689. (2006) MR2207764DOI10.1007/s00209-005-0858-x
  4. Bauer, H., Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, Walter de Gruyter Berlin (1968). (1968) Zbl0174.48802MR0239626
  5. Bonet, J., Cascales, B., 10.1017/S0004972709001154, Bull. Aust. Math. Soc. 81 (2010), 409-413. (2010) MR2639854DOI10.1017/S0004972709001154
  6. Cerrai, S., 10.1007/BF02573496, Semigroup Forum 49 (1994), 349-367. (1994) MR1293091DOI10.1007/BF02573496
  7. Davis, W. J., Lindenstrauss, J., 10.1090/S0002-9939-1972-0288560-8, Proc. Am. Math. Soc. 31 (1972), 109-111. (1972) Zbl0256.46025MR0288560DOI10.1090/S0002-9939-1972-0288560-8
  8. Diestel, J., Uhl, J. J., Vector Measures. Mathematical Surveys and Applications. Vol. 15, Amer. Math. Soc. Providence (1977). (1977) MR0453964
  9. Farkas, B., 10.1007/s00233-002-0024-2, Semigroup Forum 68 (2004), 329-353. (2004) MR2033232DOI10.1007/s00233-002-0024-2
  10. Feller, W., 10.2307/1969859, Ann. Math. 57 (1953), 287-308. (1953) Zbl0050.11601MR0054165DOI10.2307/1969859
  11. Haase, M., The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications. Vol. 169, Birkhäuser Basel (2006). (2006) MR2244037
  12. Jacob, N., Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups. Vol. I, Imperial College Press London (2001). (2001) MR1873235
  13. Ali, S. Jaker, Chakraborty, N. D., 10.1007/BF02789840, Anal. Math. 23 (1997), 241-257. (1997) MR1629973DOI10.1007/BF02789840
  14. Jarchow, H., Locally Convex Spaces, Teubner Stuttgart (1981). (1981) Zbl0466.46001MR0632257
  15. Jefferies, B., 10.1016/0022-1236(86)90063-7, J. Funct. Anal. 66 (1986), 347-364. (1986) Zbl0589.47043MR0839106DOI10.1016/0022-1236(86)90063-7
  16. Jefferies, B., 10.1016/0022-1236(87)90065-6, J. Funct. Anal. 73 (1987), 195-215. (1987) Zbl0621.47037MR0890663DOI10.1016/0022-1236(87)90065-6
  17. Koethe, G., Topological Vector Spaces. Grundlagen der Mathematischen Wissenschaften in Einzeldarstellungen. Vol. 107, Springer Berlin (1969). (1969) 
  18. Kühnemund, F., 10.1007/s00233-002-5000-3, Semigroup Forum 67 (2003), 205-225. (2003) MR1987498DOI10.1007/s00233-002-5000-3
  19. Kühnemund, F., Neerven, J. M. A. M. van, 10.1007/s00028-003-0078-y, J. Evol. Equ. 4 (2004), 53-73. (2004) MR2047306DOI10.1007/s00028-003-0078-y
  20. Kunze, M., 10.1007/s00233-009-9174-9, Semigroup Forum 79 (2009), 540-560. (2009) Zbl1192.47040MR2564063DOI10.1007/s00233-009-9174-9
  21. Lant, T., Thieme, H. R., 10.1007/s00233-006-0636-z, Semigroup Forum 74 (2007), 337-369. (2007) Zbl1146.47030MR2321572DOI10.1007/s00233-006-0636-z
  22. Musiał, K., 10.4064/sm-64-2-151-174, Stud. Math. 64 (1979), 151-174. (1979) MR0537118DOI10.4064/sm-64-2-151-174
  23. Pettis, B. J., 10.1090/S0002-9947-1938-1501970-8, Trans. Am. Math. Soc. 44 (1938), 277-304. (1938) Zbl0019.41603MR1501970DOI10.1090/S0002-9947-1938-1501970-8
  24. Phillips, R. S., 10.1090/S0002-9939-1951-0039922-1, Proc. Am. Math. Soc. 2 (1951), 234-237. (1951) MR0039922DOI10.1090/S0002-9939-1951-0039922-1
  25. Priola, E., 10.4064/sm-136-3-271-295, Stud. Math. 136 (1999), 271-295. (1999) Zbl0955.47024MR1724248DOI10.4064/sm-136-3-271-295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.