Generalized Birkhoffian realization of nonholonomic systems
Yong-Xin Guo; Chang Liu; Shi-Xing Liu
Communications in Mathematics (2010)
- Volume: 18, Issue: 1, page 21-35
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topGuo, Yong-Xin, Liu, Chang, and Liu, Shi-Xing. "Generalized Birkhoffian realization of nonholonomic systems." Communications in Mathematics 18.1 (2010): 21-35. <http://eudml.org/doc/196944>.
@article{Guo2010,
abstract = {Based on the Cauchy-Kowalevski theorem for a system of partial differential equations to be integrable, a kind of generalized Birkhoffian systems (GBSs) with local, analytic properties are put forward, whose manifold admits a presymplectic structure described by a closed 2-form which is equivalent to the self-adjointness of the GBSs. Their relations with Birkhoffian systems, generalized Hamiltonian systems are investigated in detail. Analytic, algebraic and geometric properties of GBSs are formulated, together with their integration methods induced from the Birkhoffian systems. As an important example, nonholonomic systems are reduced into GBSs, which gives a new approach to some open problems of nonholonomic mechanics.},
author = {Guo, Yong-Xin, Liu, Chang, Liu, Shi-Xing},
journal = {Communications in Mathematics},
keywords = {inverse problem; self-adjointness condition},
language = {eng},
number = {1},
pages = {21-35},
publisher = {University of Ostrava},
title = {Generalized Birkhoffian realization of nonholonomic systems},
url = {http://eudml.org/doc/196944},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Guo, Yong-Xin
AU - Liu, Chang
AU - Liu, Shi-Xing
TI - Generalized Birkhoffian realization of nonholonomic systems
JO - Communications in Mathematics
PY - 2010
PB - University of Ostrava
VL - 18
IS - 1
SP - 21
EP - 35
AB - Based on the Cauchy-Kowalevski theorem for a system of partial differential equations to be integrable, a kind of generalized Birkhoffian systems (GBSs) with local, analytic properties are put forward, whose manifold admits a presymplectic structure described by a closed 2-form which is equivalent to the self-adjointness of the GBSs. Their relations with Birkhoffian systems, generalized Hamiltonian systems are investigated in detail. Analytic, algebraic and geometric properties of GBSs are formulated, together with their integration methods induced from the Birkhoffian systems. As an important example, nonholonomic systems are reduced into GBSs, which gives a new approach to some open problems of nonholonomic mechanics.
LA - eng
KW - inverse problem; self-adjointness condition
UR - http://eudml.org/doc/196944
ER -
References
top- Bloch, A.M., Fernandez, O.E., Mestdag, T., 10.1016/S0034-4877(09)90001-5, Rep. Math. Phys. 63 2009 225–249 (2009) Zbl1207.37045MR2519467DOI10.1016/S0034-4877(09)90001-5
- Bloch, A.M., Baillieul, J., Crouch, P., Marsden J., Nonholonomic Mechanics and Control, Springer, London 2003 (2003) Zbl1045.70001MR1978379
- Cortes, J.M., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Springer, Berlin 2002 (2002) Zbl1009.70001MR1942617
- Guo, Y.X., Luo, S.K., Shang, M., Mei, F.X., 10.1016/S0034-4877(01)80046-X, Rep. Math. Phys. 47 2001 313–322 (2001) MR1847630DOI10.1016/S0034-4877(01)80046-X
- Hojman, S., Construction of genotopic transformations for first order systems of differential equations, Hadronic J. 5 1981 174–184 (1981) Zbl0515.70022MR0642608
- Ibort, L.A., Solano, J.M., 10.1088/0266-5611/7/5/005, Inverse Problems 7 1991 713–725 (1991) Zbl0756.34019MR1128637DOI10.1088/0266-5611/7/5/005
- Krupková, O., Musilová, J., 10.1016/S0034-4877(05)80028-X, Rep. Math. Phys. 55 2005 211–220 (2005) DOI10.1016/S0034-4877(05)80028-X
- Li, J.B., Zhao, X.H., Liu, Z.R., Theory of Generalized Hamiltonian Systems and Its Applications, Science Press of China Beijing 2007 (2007)
- Liu, C., Liu, S.X., Guo, Y.X., Inverse problem for Chaplygin’s nonholonomic, Sci. Chin. G 53 2010 (to appear) (2010)
- Massa, E., Pagani, E., Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics, Ann. Inst. Henri Poincaré: Phys. Theor. 61 1994 17–62 (1994) Zbl0813.70004MR1303184
- Mei, F.X., Shi, R.C., Zhang, Y.F., Wu, H.B., Dynamics of Birkhoffian systems, Press of Beijing Institute of Technology Beijing 1996 (in Chinese) (1996)
- Morando, P., Vignolo, S., 10.1088/0305-4470/31/40/015, J. Phys. A: Math. Gen. 31 1998 8233–8245 (1998) Zbl0940.70008MR1651497DOI10.1088/0305-4470/31/40/015
- Santilli, R.M., Foundations of Theoretical Mechanics I, Springer-Verlag, New York 1978 (1978) Zbl0401.70015MR0514210
- Santilli, R.M., Foundations of Theoretical Mechanics II, Springer-Verlag, New York 1983 (1983) Zbl0536.70001MR0681293
- Sarlet, W., 10.1088/0305-4470/15/5/013, J. Phys. A: Math. Gen. 15 1982 1503–1517 (1982) Zbl0537.70018MR0656831DOI10.1088/0305-4470/15/5/013
- Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/30/11/029, J. Phys. A: Math. Gen. 30 1997 4031–4052 (1997) Zbl0932.37040MR1457421DOI10.1088/0305-4470/30/11/029
- Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/28/11/022, J. Phys. A: Math. Gen. 28 1995 3253–3268 (1995) Zbl0858.70013MR1344117DOI10.1088/0305-4470/28/11/022
- Sarlet, W., Thompson, G., Prince, G.E., 10.1090/S0002-9947-02-02994-X, Trans. Amer. Math. Soc. 354 2002 2897–2919 (2002) MR1895208DOI10.1090/S0002-9947-02-02994-X
- Saunders, D.J., Sarlet, W., Cantrijn, F., 10.1088/0305-4470/29/14/042, J. Phys. A: Math. Gen. 29 1996 4265–4274 (1996) Zbl0900.70196MR1406933DOI10.1088/0305-4470/29/14/042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.