Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics

Enrico Massa; Enrico Pagani

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 61, Issue: 1, page 17-62
  • ISSN: 0246-0211

How to cite

top

Massa, Enrico, and Pagani, Enrico. "Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics." Annales de l'I.H.P. Physique théorique 61.1 (1994): 17-62. <http://eudml.org/doc/76645>.

@article{Massa1994,
author = {Massa, Enrico, Pagani, Enrico},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {relative time derivative; first jet extension; space-time; Helmholtz conditions},
language = {eng},
number = {1},
pages = {17-62},
publisher = {Gauthier-Villars},
title = {Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics},
url = {http://eudml.org/doc/76645},
volume = {61},
year = {1994},
}

TY - JOUR
AU - Massa, Enrico
AU - Pagani, Enrico
TI - Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 1
SP - 17
EP - 62
LA - eng
KW - relative time derivative; first jet extension; space-time; Helmholtz conditions
UR - http://eudml.org/doc/76645
ER -

References

top
  1. [1] M. Crampin, G.E. Prince and G. Thompson, A Geometrical Version of the Helmholtz Conditions in Time-Dependent Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1437-1447. Zbl0545.58020MR748776
  2. [2] E. Masssa and E. Pagani, Classical Dynamics of Non-holonomic Systems: a Geometric Approach, Ann. Inst. H. Poincaré, Vol. 55, 1991, pp. 511-544. Zbl0731.70012MR1130215
  3. [3] M. de León and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam, 1989. Zbl0687.53001MR1021489
  4. [4] D.J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series 142, Cambridge University Press, 1989. Zbl0665.58002MR989588
  5. [5] W. Sarlet, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2227-2238. Zbl0484.70019MR628366
  6. [6] W. Sarlet and F. Cantrijn, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics: II, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 1383-1396. Zbl0542.70020MR707383
  7. [7] M. Crampin, F. Cantrijn and W. Sarlet, Pseudo-Symmetries, Noether's Theorem and the Adjoint Equation, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. 1365-1376. Zbl0623.58045MR893325
  8. [8] M. Crampin, G.E. Prince and W. Sarlet, Adjoint Symmetries for Time-Dependent Second Order Equations, J. Phys. A: Math. Gen., Vol. 23, 1990, pp. 1335-1347. Zbl0713.58018MR1049734
  9. [9] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, John Wiley & Sons, Chichester, 1985. Zbl0592.58031
  10. [10] M. Crampin, On the Differential Geometry of the Euler-Lagrange Equations, and the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2567-2575. Zbl0475.70022MR629315
  11. [11] M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 3755-3772. Zbl0536.58004MR727054
  12. [12] W. Sarlet, The Helmholtz Condition Revisited. A New Approach to the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 15, 1982, pp. 1503-1517. Zbl0537.70018MR656831
  13. [13] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle, Phys. Reports, Vol. 188, 1990, pp. 147-284. Zbl1211.58008MR1050526
  14. [14] M. Henneaux and L.C. Shepley, Lagrangians for Spherically Symmetric Potentials, J. Math. Phys., Vol. 23, 1982, pp. 2101-2107. Zbl0507.70022MR680007
  15. [15] G. Caviglia, Dynamical Symmetries, First Integrals and the Inverse Problem of Lagrangian Dynamics, Inverse Problems, Vol. 1, 1985, pp. 13-17. Zbl0593.70002MR792585
  16. [16] G. Caviglia, Helmholtz Conditions, Covariance, and Invariance Identities, Int. J. Theor. Phys., Vol. 24, 1985, pp. 377-390. Zbl0571.70017MR793846
  17. [17] F. Cantrijn, M. Crampin and W. Sarlet, Evading the Inverse Problem for Second Order Ordinary Differential Equations by Using Additional Variables, Inverse Problems, Vol. 3, 1987, pp. 51-63. Zbl0616.34008MR875317
  18. [18] J.F. Cariñena and E. Martinez, Symmetry Theory and Lagrangian Inverse Problem for Time-Dependent Second Order Differential Equations, J. Phys. A: Math. Gen., Vol. 22, 1989, pp. 2659-2665. Zbl0709.58015MR1003903
  19. [19] W. Sarlet, Note on Equivalent Lagrangians and Symmetries, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 229-233. Zbl0514.58014MR707376
  20. [20] G. Marmo, N. Mukunda and J. Samuel, Dynamics and Symmetries for Constrained Systems: A Geometric Analysis, La Rivista del Nuovo Cimento, Vol. 6, 1983, 2, pp. 1-62. MR729476
  21. [21] F. Cantrijn, J.F. Cariñena, M. Crampin and L.A. Ibort, Reduction of Degenerate Lagrangian Systems, J. G. P., Vol. 3, 1986, pp. 353-400. Zbl0621.58020MR894631
  22. [22] J.F. Cariñena and L.A. Ibort, Geometric Theory of the Equivalence of Lagrangians for Constrained Systems, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 3335-3341. Zbl0588.58020MR817862
  23. [23] G. Giachetta, Jet Methods in Non-holonomic Mechanics, J. Math. Phys., Vol. 33, 1992, pp. 1652-1665. Zbl0758.70010MR1158984
  24. [24] H. Helmholtz, Über die Physikalische Bedeutung des Princips der Kleisten Wirkung, J. Reine Angew. Math., Vol. 100, 1887, p. 137. JFM18.0941.01
  25. [25] G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris, 1894. 
  26. [26] J. Douglas, Solution of the Inverse Problem of the Calculus of Variations, Trans. Amer. Math. Soc., Vol. 30, 1941, pp. 71-128. Zbl0025.18102MR4740JFM67.1038.01
  27. [27] M. Henneaux, Equations of Motion, Commutation Relations and Ambiguities in the Lagrangian Formalism, Ann. Phys., Vol. 140, 1982, pp. 45-64. Zbl0501.70020MR660925
  28. [28] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978. Zbl0418.35028MR517402
  29. [29] C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
  30. [30] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey, 1964. Zbl0129.13102MR193578
  31. [31] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, Proceedings of the International Meeting on Geometry and Physics, Florence, October 12-15, 1982, Pitagora, Bologna, 1983, pp. 135-165. Zbl0539.53026MR760841
  32. [32] P. Libermann and C.M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publ. Comp., Dordrecht, 1987. Zbl0643.53002MR882548
  33. [33] P.L. Garciá, The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, Vol. 14, 1974, pp. 219-246. Zbl0303.53040MR406246
  34. [34] S. Kobayashi and K. Nomizu, Foundations of Differentiel Geometry, J. Wiley & Sons, New York, 1963. Zbl0119.37502
  35. [35] J. Grifone, Estructure presque tangente et connexions I, Ann. Inst. Fourier, Grenoble, Vol. 22, 3, 1972, pp. 287-334. Zbl0219.53032MR336636
  36. [36] J. Grifone, Estructure presque tangente et connexions II, Ann. Inst. Fourier Grenoble, Vol. 22, 4, 1972, pp. 291-338. Zbl0236.53027MR341361
  37. [37] W. Sarlet, F. Cantrijn and M. Crampin, A New Look at Second Order Equations and Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1999-2009. Zbl0542.58011MR763792
  38. [38] M. Crampin and G.E. Prince, Generalizing Gauge Variance for Spherically Symmetric Potentials, J. Phys. A: Math. Gen., Vol. 18, 1985, p. 2167-2175 Zbl0578.58014MR804315

Citations in EuDML Documents

top
  1. Yong-Xin Guo, Chang Liu, Shi-Xing Liu, Generalized Birkhoffian realization of nonholonomic systems
  2. Emanuele Fiorani, Some results in Lagrangian mechanics
  3. Marco Modugno, Raffaele Vitolo, The geometry of Newton's law and rigid systems
  4. Jaime Muñoz Masqué, M. Eugenia Rosado María, The Problem of Invariance for Covariant hamiltonians
  5. Michel Fliess, Jean Lévine, Philippe Martin, Pierre Rouchon, Deux applications de la géométrie locale des diffiétés
  6. Enrico Massa, Enrico Pagani, A new look at classical mechanics of constrained systems
  7. Thoan Do, Geoff Prince, The inverse problem in the calculus of variations: new developments
  8. M. Crampin, E. Martínez, W. Sarlet, Linear connections for systems of second-order ordinary differential equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.