Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics
Annales de l'I.H.P. Physique théorique (1994)
- Volume: 61, Issue: 1, page 17-62
- ISSN: 0246-0211
Access Full Article
topHow to cite
topMassa, Enrico, and Pagani, Enrico. "Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics." Annales de l'I.H.P. Physique théorique 61.1 (1994): 17-62. <http://eudml.org/doc/76645>.
@article{Massa1994,
author = {Massa, Enrico, Pagani, Enrico},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {relative time derivative; first jet extension; space-time; Helmholtz conditions},
language = {eng},
number = {1},
pages = {17-62},
publisher = {Gauthier-Villars},
title = {Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics},
url = {http://eudml.org/doc/76645},
volume = {61},
year = {1994},
}
TY - JOUR
AU - Massa, Enrico
AU - Pagani, Enrico
TI - Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 61
IS - 1
SP - 17
EP - 62
LA - eng
KW - relative time derivative; first jet extension; space-time; Helmholtz conditions
UR - http://eudml.org/doc/76645
ER -
References
top- [1] M. Crampin, G.E. Prince and G. Thompson, A Geometrical Version of the Helmholtz Conditions in Time-Dependent Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1437-1447. Zbl0545.58020MR748776
- [2] E. Masssa and E. Pagani, Classical Dynamics of Non-holonomic Systems: a Geometric Approach, Ann. Inst. H. Poincaré, Vol. 55, 1991, pp. 511-544. Zbl0731.70012MR1130215
- [3] M. de León and P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North Holland, Amsterdam, 1989. Zbl0687.53001MR1021489
- [4] D.J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series 142, Cambridge University Press, 1989. Zbl0665.58002MR989588
- [5] W. Sarlet, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2227-2238. Zbl0484.70019MR628366
- [6] W. Sarlet and F. Cantrijn, Symmetries, First Integrals and the Inverse Problem of Lagrangian Mechanics: II, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 1383-1396. Zbl0542.70020MR707383
- [7] M. Crampin, F. Cantrijn and W. Sarlet, Pseudo-Symmetries, Noether's Theorem and the Adjoint Equation, J. Phys. A: Math. Gen., Vol. 20, 1987, pp. 1365-1376. Zbl0623.58045MR893325
- [8] M. Crampin, G.E. Prince and W. Sarlet, Adjoint Symmetries for Time-Dependent Second Order Equations, J. Phys. A: Math. Gen., Vol. 23, 1990, pp. 1335-1347. Zbl0713.58018MR1049734
- [9] G. Marmo, E.J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, John Wiley & Sons, Chichester, 1985. Zbl0592.58031
- [10] M. Crampin, On the Differential Geometry of the Euler-Lagrange Equations, and the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 14, 1981, pp. 2567-2575. Zbl0475.70022MR629315
- [11] M. Crampin, Tangent Bundle Geometry for Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 3755-3772. Zbl0536.58004MR727054
- [12] W. Sarlet, The Helmholtz Condition Revisited. A New Approach to the Inverse Problem of Lagrangian Dynamics, J. Phys. A: Math. Gen., Vol. 15, 1982, pp. 1503-1517. Zbl0537.70018MR656831
- [13] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The Inverse Problem in the Calculus of Variations and the Geometry of the Tangent Bundle, Phys. Reports, Vol. 188, 1990, pp. 147-284. Zbl1211.58008MR1050526
- [14] M. Henneaux and L.C. Shepley, Lagrangians for Spherically Symmetric Potentials, J. Math. Phys., Vol. 23, 1982, pp. 2101-2107. Zbl0507.70022MR680007
- [15] G. Caviglia, Dynamical Symmetries, First Integrals and the Inverse Problem of Lagrangian Dynamics, Inverse Problems, Vol. 1, 1985, pp. 13-17. Zbl0593.70002MR792585
- [16] G. Caviglia, Helmholtz Conditions, Covariance, and Invariance Identities, Int. J. Theor. Phys., Vol. 24, 1985, pp. 377-390. Zbl0571.70017MR793846
- [17] F. Cantrijn, M. Crampin and W. Sarlet, Evading the Inverse Problem for Second Order Ordinary Differential Equations by Using Additional Variables, Inverse Problems, Vol. 3, 1987, pp. 51-63. Zbl0616.34008MR875317
- [18] J.F. Cariñena and E. Martinez, Symmetry Theory and Lagrangian Inverse Problem for Time-Dependent Second Order Differential Equations, J. Phys. A: Math. Gen., Vol. 22, 1989, pp. 2659-2665. Zbl0709.58015MR1003903
- [19] W. Sarlet, Note on Equivalent Lagrangians and Symmetries, J. Phys. A: Math. Gen., Vol. 16, 1983, pp. 229-233. Zbl0514.58014MR707376
- [20] G. Marmo, N. Mukunda and J. Samuel, Dynamics and Symmetries for Constrained Systems: A Geometric Analysis, La Rivista del Nuovo Cimento, Vol. 6, 1983, 2, pp. 1-62. MR729476
- [21] F. Cantrijn, J.F. Cariñena, M. Crampin and L.A. Ibort, Reduction of Degenerate Lagrangian Systems, J. G. P., Vol. 3, 1986, pp. 353-400. Zbl0621.58020MR894631
- [22] J.F. Cariñena and L.A. Ibort, Geometric Theory of the Equivalence of Lagrangians for Constrained Systems, J. Phys. A: Math. Gen., Vol. 18, 1985, pp. 3335-3341. Zbl0588.58020MR817862
- [23] G. Giachetta, Jet Methods in Non-holonomic Mechanics, J. Math. Phys., Vol. 33, 1992, pp. 1652-1665. Zbl0758.70010MR1158984
- [24] H. Helmholtz, Über die Physikalische Bedeutung des Princips der Kleisten Wirkung, J. Reine Angew. Math., Vol. 100, 1887, p. 137. JFM18.0941.01
- [25] G. Darboux, Leçons sur la théorie générale des surfaces, Gauthier-Villars, Paris, 1894.
- [26] J. Douglas, Solution of the Inverse Problem of the Calculus of Variations, Trans. Amer. Math. Soc., Vol. 30, 1941, pp. 71-128. Zbl0025.18102MR4740JFM67.1038.01
- [27] M. Henneaux, Equations of Motion, Commutation Relations and Ambiguities in the Lagrangian Formalism, Ann. Phys., Vol. 140, 1982, pp. 45-64. Zbl0501.70020MR660925
- [28] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978. Zbl0418.35028MR517402
- [29] C. Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969. Zbl0174.24602MR242081
- [30] S. Sternberg, Lectures on Differential Geometry, Prentice Hall, Englewood Cliffs, New Jersey, 1964. Zbl0129.13102MR193578
- [31] L. Mangiarotti and M. Modugno, Fibered Spaces, Jet Spaces and Connections for Field Theories, Proceedings of the International Meeting on Geometry and Physics, Florence, October 12-15, 1982, Pitagora, Bologna, 1983, pp. 135-165. Zbl0539.53026MR760841
- [32] P. Libermann and C.M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publ. Comp., Dordrecht, 1987. Zbl0643.53002MR882548
- [33] P.L. Garciá, The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, Vol. 14, 1974, pp. 219-246. Zbl0303.53040MR406246
- [34] S. Kobayashi and K. Nomizu, Foundations of Differentiel Geometry, J. Wiley & Sons, New York, 1963. Zbl0119.37502
- [35] J. Grifone, Estructure presque tangente et connexions I, Ann. Inst. Fourier, Grenoble, Vol. 22, 3, 1972, pp. 287-334. Zbl0219.53032MR336636
- [36] J. Grifone, Estructure presque tangente et connexions II, Ann. Inst. Fourier Grenoble, Vol. 22, 4, 1972, pp. 291-338. Zbl0236.53027MR341361
- [37] W. Sarlet, F. Cantrijn and M. Crampin, A New Look at Second Order Equations and Lagrangian Mechanics, J. Phys. A: Math. Gen., Vol. 17, 1984, pp. 1999-2009. Zbl0542.58011MR763792
- [38] M. Crampin and G.E. Prince, Generalizing Gauge Variance for Spherically Symmetric Potentials, J. Phys. A: Math. Gen., Vol. 18, 1985, p. 2167-2175 Zbl0578.58014MR804315
Citations in EuDML Documents
top- Yong-Xin Guo, Chang Liu, Shi-Xing Liu, Generalized Birkhoffian realization of nonholonomic systems
- Emanuele Fiorani, Some results in Lagrangian mechanics
- Marco Modugno, Raffaele Vitolo, The geometry of Newton's law and rigid systems
- Jaime Muñoz Masqué, M. Eugenia Rosado María, The Problem of Invariance for Covariant hamiltonians
- Michel Fliess, Jean Lévine, Philippe Martin, Pierre Rouchon, Deux applications de la géométrie locale des diffiétés
- Enrico Massa, Enrico Pagani, A new look at classical mechanics of constrained systems
- Thoan Do, Geoff Prince, The inverse problem in the calculus of variations: new developments
- M. Crampin, E. Martínez, W. Sarlet, Linear connections for systems of second-order ordinary differential equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.