Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems

Juraj Földes

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 169-198
  • ISSN: 0011-4642

Abstract

top
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.

How to cite

top

Földes, Juraj. "Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems." Czechoslovak Mathematical Journal 61.1 (2011): 169-198. <http://eudml.org/doc/196953>.

@article{Földes2011,
abstract = {In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.},
author = {Földes, Juraj},
journal = {Czechoslovak Mathematical Journal},
keywords = {a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem; a priori estimate; Liouville theorem; blow-up rate; positive solution; indefinite parabolic problem},
language = {eng},
number = {1},
pages = {169-198},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems},
url = {http://eudml.org/doc/196953},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Földes, Juraj
TI - Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 169
EP - 198
AB - In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
LA - eng
KW - a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem; a priori estimate; Liouville theorem; blow-up rate; positive solution; indefinite parabolic problem
UR - http://eudml.org/doc/196953
ER -

References

top
  1. Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P., 10.1090/S0002-9947-08-04404-8, Trans. Am. Math. Soc. 360 (2008), 3493-3539. (2008) MR2386234DOI10.1090/S0002-9947-08-04404-8
  2. Amann, H., Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. (1984) Zbl0625.35045MR0808425
  3. Andreucci, D., DiBenedetto, E., On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. (1991) MR1145316
  4. Baras, P., Cohen, L., 10.1016/0022-1236(87)90020-6, J. Funct. Anal. 71 (1987), 142-174. (1987) Zbl0653.35037MR0879705DOI10.1016/0022-1236(87)90020-6
  5. Bidaut-Véron, M. F., Initial blow-up for the solutions of a semilinear parabolic equation with source term, In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). (1998) MR1648222
  6. Cabré, X., 10.1002/cpa.3160480504, Commun. Pure Appl. Math. 48 (1995), 539-570. (1995) MR1329831DOI10.1002/cpa.3160480504
  7. Du, Y., Li, S., Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Diff. Equ. 10 (2005), 841-860. (2005) Zbl1161.35388MR2150868
  8. Farina, A., Liouville-type theorems for elliptic problems, Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). (2007) Zbl1191.35128MR2569331
  9. Fila, M., Souplet, P., 10.1007/PL00001459, NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. (2001) Zbl0993.35046MR1867324DOI10.1007/PL00001459
  10. Fila, M., Souplet, P., Weissler, F. B., 10.1007/PL00004471, Math. Ann. 320 (2001), 87-113. (2001) MR1835063DOI10.1007/PL00004471
  11. Friedman, A., McLeod, B., 10.1512/iumj.1985.34.34025, Indiana Univ. Math. J. 34 (1985), 425-447. (1985) Zbl0576.35068MR0783924DOI10.1512/iumj.1985.34.34025
  12. Gidas, B., Spruck, J., 10.1080/03605308108820196, Commun. Partial Differ. Equations 6 (1981), 883-901. (1981) Zbl0462.35041MR0619749DOI10.1080/03605308108820196
  13. Giga, Y., Kohn, R. V., 10.1512/iumj.1987.36.36001, Indiana Univ. Math. J. 36 (1987), 1-40. (1987) Zbl0601.35052MR0876989DOI10.1512/iumj.1987.36.36001
  14. Giga, Y., Matsui, S., Sasayama, S., 10.1512/iumj.2004.53.2401, Indiana Univ. Math. J. 53 (2004), 483-514. (2004) Zbl1058.35096MR2060042DOI10.1512/iumj.2004.53.2401
  15. Giga, Y., Matsui, S., Sasayama, S., 10.1002/mma.562, Math. Methods Appl. Sci. 27 (2004), 1771-1782. (2004) Zbl1066.35043MR2087296DOI10.1002/mma.562
  16. Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer Berlin (2001). Reprint of the 1998 edition. MR1814364
  17. Herrero, M. A., Velázquez, J. J. L., 10.1016/S0294-1449(16)30217-7, Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. (1993) MR1220032DOI10.1016/S0294-1449(16)30217-7
  18. Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7, D. Reidel Publishing Co. Dordrecht (1987). (1987) MR0901759
  19. Lieberman, G. M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. River Edge, NJ (1996). (1996) Zbl0884.35001MR1465184
  20. López-Gómez, J., Quittner, P., Complete and energy blow-up in indefinite superlinear parabolic problems, Discrete Contin. Dyn. Syst. 14 (2006), 169-186. (2006) MR2170308
  21. Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16, Birkhäuser Basel (1995). (1995) MR1329547
  22. Merle, F., Zaag, H., 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C, Commun. Pure Appl. Math. 51 (1998), 139-196. (1998) Zbl0899.35044MR1488298DOI10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
  23. Poláčik, P., Quittner, P., 10.1007/3-7643-7385-7_22, In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). (2005) MR2185228DOI10.1007/3-7643-7385-7_22
  24. Poláčik, P., Quittner, P., A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation, Nonlinear Anal. 64 (2006), 1679-1689. (2006) MR2197355
  25. Poláčik, P., Quittner, P., Souplet, P., 10.1215/S0012-7094-07-13935-8, Duke Math. J. 139 (2007), 555-579. (2007) MR2350853DOI10.1215/S0012-7094-07-13935-8
  26. Poláčik, P., Quittner, P., Souplet, P., 10.1512/iumj.2007.56.2911, Indiana Univ. Math. J. 56 (2007), 879-908. (2007) MR2317549DOI10.1512/iumj.2007.56.2911
  27. Quittner, P., Simondon, F., 10.1016/j.jmaa.2004.09.044, J. Math. Anal. Appl. 304 (2005), 614-631. (2005) Zbl1071.35026MR2126555DOI10.1016/j.jmaa.2004.09.044
  28. Quittner, P., Souplet, P., Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Basel (2007). (2007) MR2346798
  29. Quittner, P., Souplet, P., Winkler, M., 10.1016/j.jde.2003.10.007, J. Differ. Equations 196 (2004), 316-339. (2004) Zbl1044.35027MR2028111DOI10.1016/j.jde.2003.10.007
  30. Serrin, J., 10.1112/plms/s3-24.2.348, Proc. London. Math. Soc. (3) 24 (1972), 348-366. (1972) Zbl0229.35035MR0289961DOI10.1112/plms/s3-24.2.348
  31. Serrin, J., 10.1016/j.jmaa.2008.10.036, J. Math. Anal. Appl. 352 (2009), 3-14. (2009) Zbl1180.35243MR2499881DOI10.1016/j.jmaa.2008.10.036
  32. Taliaferro, S. D., 10.1007/s00208-007-0088-0, Math. Ann. 338 (2007), 555-586. (2007) Zbl1120.35003MR2317931DOI10.1007/s00208-007-0088-0
  33. Taliaferro, S. D., 10.1090/S0002-9947-09-04770-9, Trans. Amer. Math. Soc. 361 (2009), 3289-3302. (2009) Zbl1175.35072MR2485427DOI10.1090/S0002-9947-09-04770-9
  34. Weissler, F. B., 10.1016/0022-0396(84)90081-0, J. Differ. Equations 55 (1984), 204-224. (1984) Zbl0555.35061MR0764124DOI10.1016/0022-0396(84)90081-0
  35. Weissler, F. B., 10.1002/cpa.3160380303, Commun. Pure Appl. Math. 38 (1985), 291-295. (1985) Zbl0592.35071MR0784475DOI10.1002/cpa.3160380303
  36. Xing, R., 10.1007/s10114-008-5615-8, Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. (2009) Zbl1180.35147MR2495531DOI10.1007/s10114-008-5615-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.