Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 169-198
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFöldes, Juraj. "Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems." Czechoslovak Mathematical Journal 61.1 (2011): 169-198. <http://eudml.org/doc/196953>.
@article{Földes2011,
abstract = {In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.},
author = {Földes, Juraj},
journal = {Czechoslovak Mathematical Journal},
keywords = {a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem; a priori estimate; Liouville theorem; blow-up rate; positive solution; indefinite parabolic problem},
language = {eng},
number = {1},
pages = {169-198},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems},
url = {http://eudml.org/doc/196953},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Földes, Juraj
TI - Liouville theorems, a priori estimates, and blow-up rates for solutions of indefinite superlinear parabolic problems
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 169
EP - 198
AB - In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
LA - eng
KW - a priori estimates; Liouville theorems; blow-up rate; positive solution; indefinite parabolic problem; a priori estimate; Liouville theorem; blow-up rate; positive solution; indefinite parabolic problem
UR - http://eudml.org/doc/196953
ER -
References
top- Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P., 10.1090/S0002-9947-08-04404-8, Trans. Am. Math. Soc. 360 (2008), 3493-3539. (2008) MR2386234DOI10.1090/S0002-9947-08-04404-8
- Amann, H., Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676. (1984) Zbl0625.35045MR0808425
- Andreucci, D., DiBenedetto, E., On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441. (1991) MR1145316
- Baras, P., Cohen, L., 10.1016/0022-1236(87)90020-6, J. Funct. Anal. 71 (1987), 142-174. (1987) Zbl0653.35037MR0879705DOI10.1016/0022-1236(87)90020-6
- Bidaut-Véron, M. F., Initial blow-up for the solutions of a semilinear parabolic equation with source term, In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998). (1998) MR1648222
- Cabré, X., 10.1002/cpa.3160480504, Commun. Pure Appl. Math. 48 (1995), 539-570. (1995) MR1329831DOI10.1002/cpa.3160480504
- Du, Y., Li, S., Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Diff. Equ. 10 (2005), 841-860. (2005) Zbl1161.35388MR2150868
- Farina, A., Liouville-type theorems for elliptic problems, Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007). (2007) Zbl1191.35128MR2569331
- Fila, M., Souplet, P., 10.1007/PL00001459, NoDEA Nonlinear Differ. Equ. Appl. 8 (2001), 473-480. (2001) Zbl0993.35046MR1867324DOI10.1007/PL00001459
- Fila, M., Souplet, P., Weissler, F. B., 10.1007/PL00004471, Math. Ann. 320 (2001), 87-113. (2001) MR1835063DOI10.1007/PL00004471
- Friedman, A., McLeod, B., 10.1512/iumj.1985.34.34025, Indiana Univ. Math. J. 34 (1985), 425-447. (1985) Zbl0576.35068MR0783924DOI10.1512/iumj.1985.34.34025
- Gidas, B., Spruck, J., 10.1080/03605308108820196, Commun. Partial Differ. Equations 6 (1981), 883-901. (1981) Zbl0462.35041MR0619749DOI10.1080/03605308108820196
- Giga, Y., Kohn, R. V., 10.1512/iumj.1987.36.36001, Indiana Univ. Math. J. 36 (1987), 1-40. (1987) Zbl0601.35052MR0876989DOI10.1512/iumj.1987.36.36001
- Giga, Y., Matsui, S., Sasayama, S., 10.1512/iumj.2004.53.2401, Indiana Univ. Math. J. 53 (2004), 483-514. (2004) Zbl1058.35096MR2060042DOI10.1512/iumj.2004.53.2401
- Giga, Y., Matsui, S., Sasayama, S., 10.1002/mma.562, Math. Methods Appl. Sci. 27 (2004), 1771-1782. (2004) Zbl1066.35043MR2087296DOI10.1002/mma.562
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer Berlin (2001). Reprint of the 1998 edition. MR1814364
- Herrero, M. A., Velázquez, J. J. L., 10.1016/S0294-1449(16)30217-7, Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189. (1993) MR1220032DOI10.1016/S0294-1449(16)30217-7
- Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7, D. Reidel Publishing Co. Dordrecht (1987). (1987) MR0901759
- Lieberman, G. M., Second Order Parabolic Differential Equations, World Scientific Publishing Co. River Edge, NJ (1996). (1996) Zbl0884.35001MR1465184
- López-Gómez, J., Quittner, P., Complete and energy blow-up in indefinite superlinear parabolic problems, Discrete Contin. Dyn. Syst. 14 (2006), 169-186. (2006) MR2170308
- Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16, Birkhäuser Basel (1995). (1995) MR1329547
- Merle, F., Zaag, H., 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C, Commun. Pure Appl. Math. 51 (1998), 139-196. (1998) Zbl0899.35044MR1488298DOI10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C
- Poláčik, P., Quittner, P., 10.1007/3-7643-7385-7_22, In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005). (2005) MR2185228DOI10.1007/3-7643-7385-7_22
- Poláčik, P., Quittner, P., A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation, Nonlinear Anal. 64 (2006), 1679-1689. (2006) MR2197355
- Poláčik, P., Quittner, P., Souplet, P., 10.1215/S0012-7094-07-13935-8, Duke Math. J. 139 (2007), 555-579. (2007) MR2350853DOI10.1215/S0012-7094-07-13935-8
- Poláčik, P., Quittner, P., Souplet, P., 10.1512/iumj.2007.56.2911, Indiana Univ. Math. J. 56 (2007), 879-908. (2007) MR2317549DOI10.1512/iumj.2007.56.2911
- Quittner, P., Simondon, F., 10.1016/j.jmaa.2004.09.044, J. Math. Anal. Appl. 304 (2005), 614-631. (2005) Zbl1071.35026MR2126555DOI10.1016/j.jmaa.2004.09.044
- Quittner, P., Souplet, P., Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Basel (2007). (2007) MR2346798
- Quittner, P., Souplet, P., Winkler, M., 10.1016/j.jde.2003.10.007, J. Differ. Equations 196 (2004), 316-339. (2004) Zbl1044.35027MR2028111DOI10.1016/j.jde.2003.10.007
- Serrin, J., 10.1112/plms/s3-24.2.348, Proc. London. Math. Soc. (3) 24 (1972), 348-366. (1972) Zbl0229.35035MR0289961DOI10.1112/plms/s3-24.2.348
- Serrin, J., 10.1016/j.jmaa.2008.10.036, J. Math. Anal. Appl. 352 (2009), 3-14. (2009) Zbl1180.35243MR2499881DOI10.1016/j.jmaa.2008.10.036
- Taliaferro, S. D., 10.1007/s00208-007-0088-0, Math. Ann. 338 (2007), 555-586. (2007) Zbl1120.35003MR2317931DOI10.1007/s00208-007-0088-0
- Taliaferro, S. D., 10.1090/S0002-9947-09-04770-9, Trans. Amer. Math. Soc. 361 (2009), 3289-3302. (2009) Zbl1175.35072MR2485427DOI10.1090/S0002-9947-09-04770-9
- Weissler, F. B., 10.1016/0022-0396(84)90081-0, J. Differ. Equations 55 (1984), 204-224. (1984) Zbl0555.35061MR0764124DOI10.1016/0022-0396(84)90081-0
- Weissler, F. B., 10.1002/cpa.3160380303, Commun. Pure Appl. Math. 38 (1985), 291-295. (1985) Zbl0592.35071MR0784475DOI10.1002/cpa.3160380303
- Xing, R., 10.1007/s10114-008-5615-8, Acta Math. Sin. (Engl. Ser.) 25 (2009), 503-518. (2009) Zbl1180.35147MR2495531DOI10.1007/s10114-008-5615-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.