On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources

D. Andreucci; E. Di Benedetto

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 3, page 363-441
  • ISSN: 0391-173X

How to cite

top

Andreucci, D., and Di Benedetto, E.. "On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 363-441. <http://eudml.org/doc/84106>.

@article{Andreucci1991,
author = {Andreucci, D., Di Benedetto, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {estimates; behaviour near ; existence local in time; weak solution; existence; non-existence; global solutions; behaviour at infinity; non- negative supersolutions; non-negative subsolutions; uniqueness result for weak solutions},
language = {eng},
number = {3},
pages = {363-441},
publisher = {Scuola normale superiore},
title = {On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources},
url = {http://eudml.org/doc/84106},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Andreucci, D.
AU - Di Benedetto, E.
TI - On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 363
EP - 441
LA - eng
KW - estimates; behaviour near ; existence local in time; weak solution; existence; non-existence; global solutions; behaviour at infinity; non- negative supersolutions; non-negative subsolutions; uniqueness result for weak solutions
UR - http://eudml.org/doc/84106
ER -

References

top
  1. [1] D. Andreucci, L∞-estimates for local solutions of degenerate parabolic equations, to appear on S.I.A.M. J. Math. Anal.. Zbl0743.35012
  2. [2] D. Andreucci - E. Di Benedetto, A new approach to initial traces in nonlinear filtration, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire. Zbl0723.35014MR1067778
  3. [3] C. Bandle - H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), pp. 595-622. Zbl0693.35081MR937878
  4. [4] P. Baras, Non-unicité des solutions d'une équation d'évolution non-linéaire, Ann. Fac. Sci. Toulouse Math., 5 (1983), pp. 287-302. Zbl0553.35046MR747196
  5. [5] P. Baras - R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations, 68 (1987), pp. 238-252. Zbl0622.35033MR892026
  6. [6] P. Baras - M. Pierre, Problems paraboliques semi-linéaires avec donnees measures, Appl. Anal., 18 (1984), pp. 111-149. Zbl0582.35060MR762868
  7. [7] P. Baras - M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), pp. 185-212. Zbl0599.35073MR797270
  8. [8] G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh., 16 (1952), pp. 67-78. Zbl0049.41902MR46217
  9. [9] PH. Bènilan - M.G. Crandall - M. Pierre, Solutions of the porous medium equation in RN under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1984), pp. 51-87. Zbl0552.35045MR726106
  10. [10] H. Brézis - A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), pp. 73-97. Zbl0527.35043MR700049
  11. [11] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), pp. 83-118. Zbl0526.35042MR684758
  12. [12] E. Di Benedetto - M.A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), pp. 187-224. Zbl0691.35047MR962278
  13. [13] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 13 (1966), pp. 109-124. Zbl0163.34002
  14. [14] V.A. Galaktionov, The conditions for there to be no global solutions of a class of quasi-linear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 22 (2) (1982), pp. 322-338; Engl. Transl. U.S.S.R. Comput. Math. and Math. Phys., 22 (2) (1982), pp. 73-90. Zbl0548.35068MR655764
  15. [15] V.A. Galaktionov, The existence and non-existence of global solutions of boundary value problems for quasi-linear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 22 (6) (1982), pp. 1369-1385; Engl. Transl. U.S.S.R. Comput. Math. and Math. Phys., 22 (6) (1982), pp. 88-107. Zbl0535.35044MR683594
  16. [16] V.A. Galaktionov - S.P. Kurdyumov - A.P. Mikhailov - A.A. Samarskji, Unbounded solutions of the Cauchy problem for the parabolic equation ut=∇(uσ ∇u)+uβ, Dokl. Akad. Nauk SSSR, 252 (1980), pp. 1362-1364; Engl. Transl. Soviet Phys. Dokl., 25 (1980), pp. 458-459. Zbl0515.35045
  17. [17] V.A. Galaktionov, S.A. Posashkov, Estimates of localized unbounded solutions of quasilinear parabolic equations, Differentsial'nye Uravneniya, 23 (1987), pp. 1133-1143; Engl. Transl. Differential Equations, 23 (1987), pp. 750-759. Zbl0636.35039MR903968
  18. [18] Y. Giga, R.V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J., 36 (1987), pp. 3-40. Zbl0601.35052MR876989
  19. [19] A. Haraux - F.B. Weissler, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), pp. 167-189. Zbl0465.35049MR648169
  20. [20] A.S. Kalashnikov, On a heat conduction equation for a medium with non-uniformly distributed non-linear heat sources or absorbers, Moscow Univ., Math. Mech. Bull., 3 (1983), pp. 20-24. Zbl0523.35060MR705595
  21. [21] S. Kamin - PH. Rosenau, Non-linear diffusion in a finite mass medium, Comm. Pure Appl. Math., 35 (1982), pp. 113-127. Zbl0469.35060MR637497
  22. [22] S. Kamin - PH. ROSENAU, Non-linear thermal evolution in an inhomogeneous medium, J. Math. Phys., 23 (1982), pp. 1385-1390. Zbl0499.76111MR666194
  23. [23] J. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), pp. 305-330. Zbl0156.33503MR160044
  24. [24] O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), pp. 423-452. Zbl0653.35036MR921547
  25. [25] H.A. Levine - P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., 109 (1990), pp. 73-80. Zbl0702.35131MR1019170
  26. [26] H.A. Levine - P.E. Sacks, Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations, 52 (1984), pp. 135-161. Zbl0487.34003MR741265
  27. [27] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'tzeva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs. 23 AMS, Providence, R.I. (1968). Zbl0174.15403
  28. [28] P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal., 109 (1990), pp. 63-71. Zbl0702.35132MR1019169
  29. [29] N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), pp. 255-292. Zbl0242.31006MR277741
  30. [30] G. Minty, Monotone (non-linear) operators in Hilbert spaces, Duke Math. J., 29 (1962), pp. 341-346. Zbl0111.31202MR169064
  31. [31] R.E. Pattle, Diffusion from an instantaneous point source with a concentration dependent coefficient, Quart. Appl. Math., 12 (1959), pp. 407-409. Zbl0119.30505MR114505
  32. [32] P.E. Sacks, The initial and boundary value problem for a class of degenerate parabolic equations, Comm. Partial Differential Equations, 8 (1983), pp. 693-733. Zbl0529.35038MR700733
  33. [33] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J., 29 (1980), pp. 79-102. Zbl0443.35034MR554819
  34. [34] F.B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), pp. 29-40. Zbl0476.35043MR599472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.