On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)
- Volume: 18, Issue: 3, page 363-441
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAndreucci, D., and Di Benedetto, E.. "On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 363-441. <http://eudml.org/doc/84106>.
@article{Andreucci1991,
author = {Andreucci, D., Di Benedetto, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {estimates; behaviour near ; existence local in time; weak solution; existence; non-existence; global solutions; behaviour at infinity; non- negative supersolutions; non-negative subsolutions; uniqueness result for weak solutions},
language = {eng},
number = {3},
pages = {363-441},
publisher = {Scuola normale superiore},
title = {On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources},
url = {http://eudml.org/doc/84106},
volume = {18},
year = {1991},
}
TY - JOUR
AU - Andreucci, D.
AU - Di Benedetto, E.
TI - On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 363
EP - 441
LA - eng
KW - estimates; behaviour near ; existence local in time; weak solution; existence; non-existence; global solutions; behaviour at infinity; non- negative supersolutions; non-negative subsolutions; uniqueness result for weak solutions
UR - http://eudml.org/doc/84106
ER -
References
top- [1] D. Andreucci, L∞-estimates for local solutions of degenerate parabolic equations, to appear on S.I.A.M. J. Math. Anal.. Zbl0743.35012
- [2] D. Andreucci - E. Di Benedetto, A new approach to initial traces in nonlinear filtration, to appear on Ann. Inst. H. Poincaré Anal. Non Linéaire. Zbl0723.35014MR1067778
- [3] C. Bandle - H.A. Levine, On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), pp. 595-622. Zbl0693.35081MR937878
- [4] P. Baras, Non-unicité des solutions d'une équation d'évolution non-linéaire, Ann. Fac. Sci. Toulouse Math., 5 (1983), pp. 287-302. Zbl0553.35046MR747196
- [5] P. Baras - R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Differential Equations, 68 (1987), pp. 238-252. Zbl0622.35033MR892026
- [6] P. Baras - M. Pierre, Problems paraboliques semi-linéaires avec donnees measures, Appl. Anal., 18 (1984), pp. 111-149. Zbl0582.35060MR762868
- [7] P. Baras - M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), pp. 185-212. Zbl0599.35073MR797270
- [8] G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh., 16 (1952), pp. 67-78. Zbl0049.41902MR46217
- [9] PH. Bènilan - M.G. Crandall - M. Pierre, Solutions of the porous medium equation in RN under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1984), pp. 51-87. Zbl0552.35045MR726106
- [10] H. Brézis - A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), pp. 73-97. Zbl0527.35043MR700049
- [11] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J., 32 (1983), pp. 83-118. Zbl0526.35042MR684758
- [12] E. Di Benedetto - M.A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), pp. 187-224. Zbl0691.35047MR962278
- [13] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 13 (1966), pp. 109-124. Zbl0163.34002
- [14] V.A. Galaktionov, The conditions for there to be no global solutions of a class of quasi-linear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 22 (2) (1982), pp. 322-338; Engl. Transl. U.S.S.R. Comput. Math. and Math. Phys., 22 (2) (1982), pp. 73-90. Zbl0548.35068MR655764
- [15] V.A. Galaktionov, The existence and non-existence of global solutions of boundary value problems for quasi-linear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz., 22 (6) (1982), pp. 1369-1385; Engl. Transl. U.S.S.R. Comput. Math. and Math. Phys., 22 (6) (1982), pp. 88-107. Zbl0535.35044MR683594
- [16] V.A. Galaktionov - S.P. Kurdyumov - A.P. Mikhailov - A.A. Samarskji, Unbounded solutions of the Cauchy problem for the parabolic equation ut=∇(uσ ∇u)+uβ, Dokl. Akad. Nauk SSSR, 252 (1980), pp. 1362-1364; Engl. Transl. Soviet Phys. Dokl., 25 (1980), pp. 458-459. Zbl0515.35045
- [17] V.A. Galaktionov, S.A. Posashkov, Estimates of localized unbounded solutions of quasilinear parabolic equations, Differentsial'nye Uravneniya, 23 (1987), pp. 1133-1143; Engl. Transl. Differential Equations, 23 (1987), pp. 750-759. Zbl0636.35039MR903968
- [18] Y. Giga, R.V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J., 36 (1987), pp. 3-40. Zbl0601.35052MR876989
- [19] A. Haraux - F.B. Weissler, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), pp. 167-189. Zbl0465.35049MR648169
- [20] A.S. Kalashnikov, On a heat conduction equation for a medium with non-uniformly distributed non-linear heat sources or absorbers, Moscow Univ., Math. Mech. Bull., 3 (1983), pp. 20-24. Zbl0523.35060MR705595
- [21] S. Kamin - PH. Rosenau, Non-linear diffusion in a finite mass medium, Comm. Pure Appl. Math., 35 (1982), pp. 113-127. Zbl0469.35060MR637497
- [22] S. Kamin - PH. ROSENAU, Non-linear thermal evolution in an inhomogeneous medium, J. Math. Phys., 23 (1982), pp. 1385-1390. Zbl0499.76111MR666194
- [23] J. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), pp. 305-330. Zbl0156.33503MR160044
- [24] O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), pp. 423-452. Zbl0653.35036MR921547
- [25] H.A. Levine - P. Meier, The value of the critical exponent for reaction-diffusion equations in cones, Arch. Rational Mech. Anal., 109 (1990), pp. 73-80. Zbl0702.35131MR1019170
- [26] H.A. Levine - P.E. Sacks, Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations, 52 (1984), pp. 135-161. Zbl0487.34003MR741265
- [27] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'tzeva, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs. 23 AMS, Providence, R.I. (1968). Zbl0174.15403
- [28] P. Meier, On the critical exponent for reaction-diffusion equations, Arch. Rational Mech. Anal., 109 (1990), pp. 63-71. Zbl0702.35132MR1019169
- [29] N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), pp. 255-292. Zbl0242.31006MR277741
- [30] G. Minty, Monotone (non-linear) operators in Hilbert spaces, Duke Math. J., 29 (1962), pp. 341-346. Zbl0111.31202MR169064
- [31] R.E. Pattle, Diffusion from an instantaneous point source with a concentration dependent coefficient, Quart. Appl. Math., 12 (1959), pp. 407-409. Zbl0119.30505MR114505
- [32] P.E. Sacks, The initial and boundary value problem for a class of degenerate parabolic equations, Comm. Partial Differential Equations, 8 (1983), pp. 693-733. Zbl0529.35038MR700733
- [33] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J., 29 (1980), pp. 79-102. Zbl0443.35034MR554819
- [34] F.B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), pp. 29-40. Zbl0476.35043MR599472
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.