The story of the 120-cell in 4

John Stillwell

Pokroky matematiky, fyziky a astronomie (2001)

  • Volume: 46, Issue: 4, page 265-280
  • ISSN: 0032-2423

How to cite

top

Stillwell, John. "Příběh stodvacetistěnu v ${\mathbb {R}}^4$." Pokroky matematiky, fyziky a astronomie 46.4 (2001): 265-280. <http://eudml.org/doc/196971>.

@article{Stillwell2001,
author = {Stillwell, John},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {regular polytope; four-dimensional space; quaternion},
language = {cze},
number = {4},
pages = {265-280},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Příběh stodvacetistěnu v $\{\mathbb \{R\}\}^4$},
url = {http://eudml.org/doc/196971},
volume = {46},
year = {2001},
}

TY - JOUR
AU - Stillwell, John
TI - Příběh stodvacetistěnu v ${\mathbb {R}}^4$
JO - Pokroky matematiky, fyziky a astronomie
PY - 2001
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 46
IS - 4
SP - 265
EP - 280
LA - cze
KW - regular polytope; four-dimensional space; quaternion
UR - http://eudml.org/doc/196971
ER -

References

top
  1. Cayley, A., Collected Mathematical Papers, Cambridge Univ. Press 1889. (1889) 
  2. Coxeter, H. S. M., Regular Polytopes, Methuen, London 1948. (1948) Zbl0031.06502
  3. Coxeter, H. S. M., Introduction to Geometry, Wiley, New York 1961. (1961) Zbl0095.34502MR0123930
  4. Coxeter, H. S. M., Regular Complex Polytopes, Cambridge Univ. Press 1974. (1974) Zbl0296.50009MR0370328
  5. Coxeter, H. S. M., Binary polyhedral groups, Duke Math. J. 7 (1940), 367–379. (1940) Zbl0024.15002MR0003409
  6. Dehn, M., Papers on Group Theory and Topology, Springer-Verlag, Berlin and New York 1987. (1987) MR0881797
  7. Graves, R. P., Life of Sir William Rowan Hamilton, Hodges, Figgis & Co. 1882–1889. (1882) 
  8. Hamilton, W. R., The Mathematical Papers of Sir William Rowan Hamilton, Vol. III, Cambridge Univ. Press 1967. (1967) Zbl0156.24201
  9. Hilbert, D., Cohn-Vossen, S., Anschauliche Geometrie, Springer, Berlin and New York 1932; English transl. Geometry and the Imagination, Chelsea, New York 1952. (1932) Zbl0005.11202MR0046650
  10. Klein, F., Fricke, R., Vorlesungen über die Theorie der elliptischen Modulfunktionen, Teubner, Leipzig 1890. (1890) 
  11. Kneser, H., Geschlossene Flächen in dreidimensional Mannigfaltigkeiten, Jahresber. Deutsch. Math. Verein. 16 (1929), 248–260. (1929) Zbl55.0311.03
  12. Poincaré, H., Cinquième complément à la analysis situs, Rend. Circ. Mat. Palermo 18 (1904), 45–110. (1904) Zbl35.0504.13
  13. Schläfli, L., Theorie des vielfachen Kontinuität, Aufträge der Denkschriften-Kommission der Schweizer naturforschender Gesellschaft, Zurcher & Furrer 1901. (1901) Zbl32.0083.10
  14. Steinitz, E., Polyeder und Raumeinteilungen, Encyklopädie Math. Wissenschaften, III AB 12, Teubner, Leipzig 1916, 1–139. (1916) 
  15. Stringham, W. I., Regular figures in n -dimensional space, Amer. J. Math. 3 (1880), 1–14. (1880) Zbl12.0405.01MR1505244
  16. Sullivan, J. M., Generating and rendering four-dimensional polytopes, The Mathematical Journal 1 (1991), 76–85. (1991) 
  17. Taylor, J., The structure of singularities in soap-bubble-like and soup-film-like minimal surfaces, Ann. of Math. 103 (1976), 489–539. (1976) Zbl0335.49032MR0428181
  18. Threlfall, W., Lösung der Aufgabe 84, Jahresber. Deutsch. Math. Verein. 41 (1932), 6–7. (1932) 
  19. Threlfall, W., Seifert, H., Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes, Math. Ann. 104 (1931), 1–70. (1931) Zbl0006.03403MR1512649
  20. Weber, C., Seifert, H., Die beiden Dodekaederräume, Math. Z. 37 (1933), 237–253. (1933) Zbl0007.02806MR1545392

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.