From the Fermat numbers to geometry
Pokroky matematiky, fyziky a astronomie (2001)
- Volume: 46, Issue: 3, page 179-191
- ISSN: 0032-2423
Access Full Article
topHow to cite
topKřížek, Michal. "Od Fermatových čísel ke geometrii." Pokroky matematiky, fyziky a astronomie 46.3 (2001): 179-191. <http://eudml.org/doc/197044>.
@article{Křížek2001,
author = {Křížek, Michal},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Fermat number; regular polygon; Fermat transformation; Mandelbrot set},
language = {cze},
number = {3},
pages = {179-191},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Od Fermatových čísel ke geometrii},
url = {http://eudml.org/doc/197044},
volume = {46},
year = {2001},
}
TY - JOUR
AU - Křížek, Michal
TI - Od Fermatových čísel ke geometrii
JO - Pokroky matematiky, fyziky a astronomie
PY - 2001
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 46
IS - 3
SP - 179
EP - 191
LA - cze
KW - Fermat number; regular polygon; Fermat transformation; Mandelbrot set
UR - http://eudml.org/doc/197044
ER -
References
top- Agarwal, R. C., Burrus, C. S., Fast convolution using Fermat number transforms with applications to digital filtering, IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97. (1974) MR0398650
- Antonjuk, P. N., Stanjukovič, K. P., The logistic difference equation. Period doublings and Fermat numbers, (Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292. (1990) MR1080023
- Biermann, K.-R., Thomas Clausen, Mathematiker und Astronom, J. Reine Angew. Math. 216 (1964), 159–198. (1964) Zbl0127.00504MR0164862
- Chang, C. C., An ordered minimal perfect hashing scheme based upon Euler’s theorem, Inform. Sci. 32 (1984), 165–172. (1984) Zbl0567.68037MR0749147
- Cooley, J. W., Tukey, J. W., An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301. (1965) Zbl0127.09002MR0178586
- Crandall, R. E., Mayer, E., Papadopoulos, J., The twenty-fourth Fermat number is composite, Math. Comp., submitted (1999), 1–21. (1999) Zbl1035.11066
- Creutzburg, R., Grundmann, H.-J., Fast digital convolution via Fermat number transform, (German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46. (1985) MR0805051
- Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1978), 25–52. (1978) Zbl0509.58037MR0501179
- Hewgill, D., A relationship between Pascal’s triangle and Fermat’s numbers, Fibonacci Quart. 15 (1977), 183–184. (1977) MR0437343
- Gauss, C. F., Disquisitiones arithmeticae, (přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986. (1801)
- Jones, R., Pearce, J., A postmodern view of fractions and the reciprocals of Fermat primes, Math. Mag. 73 (2000), 83–97. (2000) MR1822751
- Křížek, M., O Fermatových číslech, PMFA 40 (1995), 243–253. (1995) MR1386144
- Křížek, M., Křížek, P., Kouzelný dvanáctistěn pětiúhelníkový, Rozhledy mat.-fyz. 74 (1997), 234–238. (1997)
- Křížek, M., Luca, F., Somer, L., 17 lectures on Fermat numbers: From number theory to geometry, Springer-Verlag, New York 2001. (2001) Zbl1010.11002MR1866957
- Landry, F., Sur la décomposition du nombre , C. R. Acad. Sci. Paris 91 (1880), 138. (1880)
- Lucas, E., Théorèmes d’arithmétique, Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284. (1878)
- Pierpont, J., On an undemostrated theorem of the Disquisitiones Arithmeticæ, Bull. Amer. Math. Soc. 2 (1895/96), 77–83. (1895) Zbl26.0122.01MR1557414
- Reed, I. S., Truong, T. K., Welch, L. R., The fast decoding of Reed-Solomon codes using Fermat transforms, IEEE Trans. Inform. Theory 24 (1978), 497–499. (1978) Zbl0385.94016MR0504337
- Ripley, B. D., Stochastic simulations, John Wiley & Sons, New York 1987. (1987) MR0875224
- Rosen, M., Abel’s theorem on the lemniscate, Amer. Math. Monthly 88 (1981), 387–395. (1981) Zbl0491.14023MR0622954
- Schönhage, A., Strassen, V., Fast multiplication of large numbers, (German). Computing 7 (1971), 281–292. (1971) Zbl0223.68007
- Wantzel, P. L., Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas, J. Math. 2 (1837), 366–372. (1837)
- [unknown], http://www.prothsearch.net/fermat.html
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.