From the Fermat numbers to geometry

Michal Křížek

Pokroky matematiky, fyziky a astronomie (2001)

  • Volume: 46, Issue: 3, page 179-191
  • ISSN: 0032-2423

How to cite

top

Křížek, Michal. "Od Fermatových čísel ke geometrii." Pokroky matematiky, fyziky a astronomie 46.3 (2001): 179-191. <http://eudml.org/doc/197044>.

@article{Křížek2001,
author = {Křížek, Michal},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Fermat number; regular polygon; Fermat transformation; Mandelbrot set},
language = {cze},
number = {3},
pages = {179-191},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Od Fermatových čísel ke geometrii},
url = {http://eudml.org/doc/197044},
volume = {46},
year = {2001},
}

TY - JOUR
AU - Křížek, Michal
TI - Od Fermatových čísel ke geometrii
JO - Pokroky matematiky, fyziky a astronomie
PY - 2001
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 46
IS - 3
SP - 179
EP - 191
LA - cze
KW - Fermat number; regular polygon; Fermat transformation; Mandelbrot set
UR - http://eudml.org/doc/197044
ER -

References

top
  1. Agarwal, R. C., Burrus, C. S., Fast convolution using Fermat number transforms with applications to digital filtering, IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97. (1974) MR0398650
  2. Antonjuk, P. N., Stanjukovič, K. P., The logistic difference equation. Period doublings and Fermat numbers, (Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292. (1990) MR1080023
  3. Biermann, K.-R., Thomas Clausen, Mathematiker und Astronom, J. Reine Angew. Math. 216 (1964), 159–198. (1964) Zbl0127.00504MR0164862
  4. Chang, C. C., An ordered minimal perfect hashing scheme based upon Euler’s theorem, Inform. Sci. 32 (1984), 165–172. (1984) Zbl0567.68037MR0749147
  5. Cooley, J. W., Tukey, J. W., An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301. (1965) Zbl0127.09002MR0178586
  6. Crandall, R. E., Mayer, E., Papadopoulos, J., The twenty-fourth Fermat number is composite, Math. Comp., submitted (1999), 1–21. (1999) Zbl1035.11066
  7. Creutzburg, R., Grundmann, H.-J., Fast digital convolution via Fermat number transform, (German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46. (1985) MR0805051
  8. Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1978), 25–52. (1978) Zbl0509.58037MR0501179
  9. Hewgill, D., A relationship between Pascal’s triangle and Fermat’s numbers, Fibonacci Quart. 15 (1977), 183–184. (1977) MR0437343
  10. Gauss, C. F., Disquisitiones arithmeticae, (přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986. (1801) 
  11. Jones, R., Pearce, J., A postmodern view of fractions and the reciprocals of Fermat primes, Math. Mag. 73 (2000), 83–97. (2000) MR1822751
  12. Křížek, M., O Fermatových číslech, PMFA 40 (1995), 243–253. (1995) MR1386144
  13. Křížek, M., Křížek, P., Kouzelný dvanáctistěn pětiúhelníkový, Rozhledy mat.-fyz. 74 (1997), 234–238. (1997) 
  14. Křížek, M., Luca, F., Somer, L., 17 lectures on Fermat numbers: From number theory to geometry, Springer-Verlag, New York 2001. (2001) Zbl1010.11002MR1866957
  15. Landry, F., Sur la décomposition du nombre 2 64 + 1 , C. R. Acad. Sci. Paris 91 (1880), 138. (1880) 
  16. Lucas, E., Théorèmes d’arithmétique, Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284. (1878) 
  17. Pierpont, J., On an undemostrated theorem of the Disquisitiones Arithmeticæ, Bull. Amer. Math. Soc. 2 (1895/96), 77–83. (1895) Zbl26.0122.01MR1557414
  18. Reed, I. S., Truong, T. K., Welch, L. R., The fast decoding of Reed-Solomon codes using Fermat transforms, IEEE Trans. Inform. Theory 24 (1978), 497–499. (1978) Zbl0385.94016MR0504337
  19. Ripley, B. D., Stochastic simulations, John Wiley & Sons, New York 1987. (1987) MR0875224
  20. Rosen, M., Abel’s theorem on the lemniscate, Amer. Math. Monthly 88 (1981), 387–395. (1981) Zbl0491.14023MR0622954
  21. Schönhage, A., Strassen, V., Fast multiplication of large numbers, (German). Computing 7 (1971), 281–292. (1971) Zbl0223.68007
  22. Wantzel, P. L., Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas, J. Math. 2 (1837), 366–372. (1837) 
  23. [unknown], http://www.prothsearch.net/fermat.html 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.