On Fermat numbers

Michal Křížek

Pokroky matematiky, fyziky a astronomie (1995)

  • Volume: 40, Issue: 5, page 243-253
  • ISSN: 0032-2423

How to cite

top

Křížek, Michal. "O Fermatových číslech." Pokroky matematiky, fyziky a astronomie 40.5 (1995): 243-253. <http://eudml.org/doc/35970>.

@article{Křížek1995,
author = {Křížek, Michal},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Fermat numbers; greatest common divisor},
language = {cze},
number = {5},
pages = {243-253},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {O Fermatových číslech},
url = {http://eudml.org/doc/35970},
volume = {40},
year = {1995},
}

TY - JOUR
AU - Křížek, Michal
TI - O Fermatových číslech
JO - Pokroky matematiky, fyziky a astronomie
PY - 1995
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 40
IS - 5
SP - 243
EP - 253
LA - cze
KW - Fermat numbers; greatest common divisor
UR - http://eudml.org/doc/35970
ER -

References

top
  1. Brent, R. P., Factorization of the eleventh Fermat number, Abstracts Amer. Math. Soc. 10 (1989), 176–177. (1989) 
  2. Brent, R. P., Pollard, J. M., Factorization of the eighth Fermat number, Math. Comp. 36 (1981), 627–630. (1981) Zbl0476.10007MR0606520
  3. Brillhart, J., Lehmer, D. H., Selfridge, J. L., Tuckerman, B., Wagstaff, S. S., Factorization of b n ± 1 , b = 2 , 3 , 5 , 6 , 7 , 10 , 11 , 12 up to high powers, Contemporary Math. vol. 22, Amer. Math. Soc., Providence 1988. (1988) MR0996414
  4. Crandall, R., Doenias, J., Norrie, C., Young, J., The twenty-second Fermat number is composite, Math. Comp. 64 (1995), 863–868. (1995) Zbl0823.11073MR1277765
  5. Dickson, L. E., History of the theory of numbers: Divisibility and primality, Carnegie Inst. of Washington 1919. (1919) Zbl47.0100.04
  6. Gostin, G. B., McLaughlin, P. B., Jr.,, Six new factors of Fermat numbers, Math. Comp. 38 (1982), 645–649. (1982) Zbl0486.10005MR0645680
  7. Hardy, G. H., Wright, E. M., An introduction to the theory of numbers, Clarendon Press, Oxford 1945. (1945) 
  8. Keller, W., Factors of Fermat numbers and large primes of the form k · 2 n + 1 , Math. Comp. 41 (1983), 661–673. (1983) MR0717710
  9. Keller, W., Factors of Fermat numbers and large primes of the form k · 2 n + 1 . II, Preprint Univ. of Hamburg (1992), 1-40. (1992) 
  10. Křížek, M., Chleboun, J., A note on factorization of the Fermat numbers and their factors of the form 3 h 2 n + 1 , Math. Bohem. 119 (1994), 437–445. (1994) Zbl0822.11007MR1316595
  11. Lenstra, H. W., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649–673. (1987) Zbl0629.10006MR0916721
  12. Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., Pollard, J. M., The factorization of the ninth Fermat number, Math. Comp. 61 (1993), 319–349. (1993) Zbl0792.11055MR1182953
  13. Lenstra, H. W., Pomerance, C., A rigorous time bound for factoring integers, J. Amer. Math. Soc. 5 (1992), 483–516. (1992) Zbl0770.11057MR1137100
  14. Ligh, S., Jones, P., Generalized Fermat and Mersenne numbers, Fibonacci Quart. 20 (1982), 12–16 . (1982) Zbl0477.10017MR0660752
  15. Montgomery, P. L., New solutions of a p - 1 1 ( mod p ) 2 , Math. Comp. 61 (1993), 361–363. (1993) MR1182246
  16. Morrison, M. A., Brillhart, J., A method of factoring and factorization of  F 7 , Math. Comp. 29 (1975), 183–205. (1975) Zbl0302.10010MR0371800
  17. Pollard, J. M., Theorems on factorization and primality testing, Math. Proc. Cambridge Philos. Soc. 76 (1974), 521–528. (1974) Zbl0294.10005MR0354514
  18. Pudlák, P., O složitosti, PMFA 33 (1988), 20–34. (1988) 
  19. Reisel, H., Prime numbers and computer methods for factorization, Birkhäuser, Boston-Basel-Stuttgart 1985. (1985) MR0897531
  20. Robinson, R. M., The converse of Fermat’s theorem, Amer. Math. Monthly 64 (1957), 703–710. (1957) Zbl0079.06303MR0098057
  21. Schroeder, M. R., Number theory in science and communication, Springer-Verlag 1990. (1990) Zbl0781.11043
  22. Sierpiński, W., Teorija liczb, Warszawa 1950. (1950) 
  23. Skula, L., Některé historické aspekty Fermatova problému, PMFA 39 (1994), 318–330. (1994) 
  24. Stewart, I., Geometry finds factors faster, Nature 325 (1987), 199. (1987) 
  25. Šalát, T., O dokonalých číslach, PMFA IX (1964), 1–13. (1964) 
  26. Šofr, B., Euklidovské geometrické konštrukcie, ALFA, Bratislava 1976. (1976) 
  27. Young, J., Buell, D. A., The twentieth Fermat number is composite, Math. Comp. 50 (1988), 261–263. (1988) Zbl0633.10001MR0917833
  28. Williams, H. C., How was F 6 factored?, Math. Comp. 61 (1993), 463–474. (1993) MR1182248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.