Triple automorphisms of simple Lie algebras
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 1007-1016
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Deng Yin, and Yu, Xiaoxiang. "Triple automorphisms of simple Lie algebras." Czechoslovak Mathematical Journal 61.4 (2011): 1007-1016. <http://eudml.org/doc/197191>.
@article{Wang2011,
abstract = {An invertible linear map $\varphi $ on a Lie algebra $L$ is called a triple automorphism of it if $\varphi ([x,[y,z]])=[\varphi (x),[ \varphi (y),\varphi (z)]]$ for $\forall x, y, z\in L$. Let $\mathfrak \{g\}$ be a finite-dimensional simple Lie algebra of rank $l$ defined over an algebraically closed field $F$ of characteristic zero, $\mathfrak \{p\}$ an arbitrary parabolic subalgebra of $\mathfrak \{g\}$. It is shown in this paper that an invertible linear map $\varphi $ on $\mathfrak \{p\}$ is a triple automorphism if and only if either $\varphi $ itself is an automorphism of $\mathfrak \{p\}$ or it is the composition of an automorphism of $\mathfrak \{p\}$ and an extremal map of order $2$.},
author = {Wang, Deng Yin, Yu, Xiaoxiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {simple Lie algebras; parabolic subalgebras; triple automorphisms of Lie algebras; simple Lie algebra; parabolic subalgebra; triple automorphisms of Lie algebras},
language = {eng},
number = {4},
pages = {1007-1016},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Triple automorphisms of simple Lie algebras},
url = {http://eudml.org/doc/197191},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Wang, Deng Yin
AU - Yu, Xiaoxiang
TI - Triple automorphisms of simple Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1007
EP - 1016
AB - An invertible linear map $\varphi $ on a Lie algebra $L$ is called a triple automorphism of it if $\varphi ([x,[y,z]])=[\varphi (x),[ \varphi (y),\varphi (z)]]$ for $\forall x, y, z\in L$. Let $\mathfrak {g}$ be a finite-dimensional simple Lie algebra of rank $l$ defined over an algebraically closed field $F$ of characteristic zero, $\mathfrak {p}$ an arbitrary parabolic subalgebra of $\mathfrak {g}$. It is shown in this paper that an invertible linear map $\varphi $ on $\mathfrak {p}$ is a triple automorphism if and only if either $\varphi $ itself is an automorphism of $\mathfrak {p}$ or it is the composition of an automorphism of $\mathfrak {p}$ and an extremal map of order $2$.
LA - eng
KW - simple Lie algebras; parabolic subalgebras; triple automorphisms of Lie algebras; simple Lie algebra; parabolic subalgebra; triple automorphisms of Lie algebras
UR - http://eudml.org/doc/197191
ER -
References
top- Humphreys, J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics 9, New York-Heidelberg-Berlin, Springer-Verlag (1972). (1972) Zbl0254.17004MR0499562
- Ji, P., Wang, L., 10.1016/j.laa.2005.02.004, Linear Algebra Appl. 403 (2005), 399-408. (2005) Zbl1114.46048MR2140293DOI10.1016/j.laa.2005.02.004
- Lu, F.-Y., 10.1002/mana.200410520, Math. Nach. 280 (2007), 882-887. (2007) Zbl1124.47054MR2326061DOI10.1002/mana.200410520
- Miers, C. R., 10.1090/S0002-9939-1978-0487480-9, Proc. Am. Math. Soc. 71 (1978), 57-61. (1978) Zbl0384.46047MR0487480DOI10.1090/S0002-9939-1978-0487480-9
- Li, Q.-G., Wang, H.-T., Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring, Linear Algebra Appl. 430 (2009), 66-77. (2009) Zbl1163.17014MR2460499
- Cao, H.-X., Wu, B.-W., Zhang, J.-H., 10.1016/j.laa.2005.12.003, Linear Algebra Appl. 416 (2006), 559-567. (2006) Zbl1102.47060MR2242444DOI10.1016/j.laa.2005.12.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.