The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Triple automorphisms of simple Lie algebras”

The contact system on the ( m , ) -jet spaces

J. Muñoz, F. J. Muriel, Josemar Rodríguez (2001)

Archivum Mathematicum

Similarity:

This paper is a continuation of [MMR:98], where we give a construction of the canonical Pfaff system Ω ( M m ) on the space of ( m , ) -velocities of a smooth manifold M . Here we show that the characteristic system of Ω ( M m ) agrees with the Lie algebra of Aut ( m ) , the structure group of the principal fibre bundle M ˇ m J m ( M ) , hence it is projectable to an irreducible contact system on the space of ( m , ) -jets ( = -th order contact elements of dimension m ) of M . Furthermore, we translate to the language of Weil bundles the structure...

The Wells map for abelian extensions of 3-Lie algebras

Youjun Tan, Senrong Xu (2019)

Czechoslovak Mathematical Journal

Similarity:

The Wells map relates automorphisms with cohomology in the setting of extensions of groups and Lie algebras. We construct the Wells map for some abelian extensions 0 A L π B 0 of 3-Lie algebras to obtain obstruction classes in H 1 ( B , A ) for a pair of automorphisms in Aut ( A ) × Aut ( B ) to be inducible from an automorphism of L . Application to free nilpotent 3-Lie algebras is discussed.

The groups of automorphisms of the Witt W n and Virasoro Lie algebras

Vladimir V. Bavula (2016)

Czechoslovak Mathematical Journal

Similarity:

Let L n = K [ x 1 ± 1 , ... , x n ± 1 ] be a Laurent polynomial algebra over a field K of characteristic zero, W n : = Der K ( L n ) the Lie algebra of K -derivations of the algebra L n , the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1 -dimensional central extension of the Witt Lie algebra. The Lie algebras W n and Vir are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: Aut Lie ( Vir ) Aut Lie ( W 1 ) { ± 1 } K * , and give a short proof that Aut Lie ( W n ) Aut K - alg ( L n ) GL n ( ) K * n .

Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang, Daowei Lu, Ding-Guo Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s π -biproduct. Firstly, we discuss the endomorphism monoid End π -Hopf ( A × H , p ) and the automorphism group Aut π -Hopf ( A × H , p ) of Radford’s π -biproduct A × H = { A × H α } α π , and prove that the automorphism has a factorization closely related to the factors A and H = { H α } α π . What’s more interesting is that a pair of maps ( F L , F R ) can be used to describe a family of mappings F = { F α } α π . Secondly, we consider the relationship between the automorphism group Aut π -Hopf ( A × H , p ) and the automorphism group...

Tight bounds for the dihedral angle sums of a pyramid

Sergey Korotov, Lars Fredrik Lund, Jon Eivind Vatne (2023)

Applications of Mathematics

Similarity:

We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval ( 3 π , 5 π ) . Moreover, for any number in ( 3 π , 5 π ) there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound 4 π is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation...

Automorphisms of central extensions of type I von Neumann algebras

Sergio Albeverio, Shavkat Ayupov, Karimbergen Kudaybergenov, Rauaj Djumamuratov (2011)

Studia Mathematica

Similarity:

Given a von Neumann algebra M we consider its central extension E(M). For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally measurable operators affiliated with M. In this case we show that an arbitrary automorphism T of E(M) can be decomposed as T = T a T ϕ , where T a ( x ) = a x a - 1 is an inner automorphism implemented by an element a ∈ E(M), and T ϕ is a special automorphism generated by an automorphism ϕ of the center of E(M). In particular if M is of type I then every band preserving...