The wave equation with oscillating density: observability at low frequency

Gilles Lebeau

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 219-258
  • ISSN: 1292-8119

Abstract

top
We prove an observability estimate for a wave equation with rapidly oscillating density, in a bounded domain with Dirichlet boundary condition.

How to cite

top

Lebeau, Gilles. "The wave equation with oscillating density: observability at low frequency." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 219-258. <http://eudml.org/doc/197278>.

@article{Lebeau2010,
abstract = { We prove an observability estimate for a wave equation with rapidly oscillating density, in a bounded domain with Dirichlet boundary condition. },
author = {Lebeau, Gilles},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Bloch wave; observability; microlocal defect measures.; Dirichlet boundary condition; singular perturbation},
language = {eng},
month = {3},
pages = {219-258},
publisher = {EDP Sciences},
title = {The wave equation with oscillating density: observability at low frequency},
url = {http://eudml.org/doc/197278},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Lebeau, Gilles
TI - The wave equation with oscillating density: observability at low frequency
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 219
EP - 258
AB - We prove an observability estimate for a wave equation with rapidly oscillating density, in a bounded domain with Dirichlet boundary condition.
LA - eng
KW - Bloch wave; observability; microlocal defect measures.; Dirichlet boundary condition; singular perturbation
UR - http://eudml.org/doc/197278
ER -

References

top
  1. M. Avellaneda, C. Bardos and J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptot. Anal.5 (1992) 481-484.  
  2. G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.  
  3. N. Burq and G. Lebeau, Mesures de défaut de compacité; applications au système de Lamé, preprint.  
  4. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1075.  
  5. C. Castro, Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint.  
  6. C. Castro and E. Zuazua, Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris324 (1997) 1237-1242.  
  7. P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire X EDP, exposé 16 (1991).  
  8. P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J.71 (1993) 559-607.  
  9. G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures Appl.71 (1993) 267-291.  
  10. G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, A. Boutet de Monvel and V. Marchenko, Eds. Kluwer Academic Publishers (1996) 73-109.  
  11. R. Melrose and J. Sjöstrand, Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31 (1978) 593-617; 35 (1982) 129-168.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.