The wave equation with oscillating density: observability at low frequency
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 219-258
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topLebeau, Gilles. "The wave equation with oscillating density: observability at low frequency." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 219-258. <http://eudml.org/doc/197278>.
@article{Lebeau2010,
abstract = {
We prove an observability estimate for a
wave equation with rapidly oscillating density,
in a bounded domain with Dirichlet boundary condition.
},
author = {Lebeau, Gilles},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Bloch wave; observability; microlocal defect measures.; Dirichlet boundary condition; singular perturbation},
language = {eng},
month = {3},
pages = {219-258},
publisher = {EDP Sciences},
title = {The wave equation with oscillating density: observability at low frequency},
url = {http://eudml.org/doc/197278},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Lebeau, Gilles
TI - The wave equation with oscillating density: observability at low frequency
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 219
EP - 258
AB -
We prove an observability estimate for a
wave equation with rapidly oscillating density,
in a bounded domain with Dirichlet boundary condition.
LA - eng
KW - Bloch wave; observability; microlocal defect measures.; Dirichlet boundary condition; singular perturbation
UR - http://eudml.org/doc/197278
ER -
References
top- M. Avellaneda, C. Bardos and J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptot. Anal.5 (1992) 481-484.
- G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.
- N. Burq and G. Lebeau, Mesures de défaut de compacité; applications au système de Lamé, preprint.
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1075.
- C. Castro, Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint.
- C. Castro and E. Zuazua, Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris324 (1997) 1237-1242.
- P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire X EDP, exposé 16 (1991).
- P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J.71 (1993) 559-607.
- G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures Appl.71 (1993) 267-291.
- G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, A. Boutet de Monvel and V. Marchenko, Eds. Kluwer Academic Publishers (1996) 73-109.
- R. Melrose and J. Sjöstrand, Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31 (1978) 593-617; 35 (1982) 129-168.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.