Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities

Gianni Dal Maso; Hélène Frankowska

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 369-393
  • ISSN: 1292-8119

Abstract

top
We investigate the value function of the Bolza problem of the Calculus of Variations
 V ( t , x ) = inf 0 t L ( y ( s ) , y ' ( s ) ) d s + ϕ ( y ( t ) ) : y W 1 , 1 ( 0 , t ; n ) , y ( 0 ) = x , with a lower semicontinuous Lagrangian L and a final cost ϕ , and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize the value function by using the so called contingent inequalities.

How to cite

top

Maso, Gianni Dal, and Frankowska, Hélène. "Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 369-393. <http://eudml.org/doc/197304>.

@article{Maso2010,
abstract = { We investigate the value function of the Bolza problem of the Calculus of Variations
$$ V (t,x)=\inf \left\\{ \int\_\{0\}^\{t\} L (y (s),y' (s))ds + \varphi (y(t)) : y \in W^\{1,1\} (0,t;\mathbb\{R\}^n),\; y(0)=x \right\\},$$ with a lower semicontinuous Lagrangian L and a final cost $ \varphi $, and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize the value function by using the so called contingent inequalities. },
author = {Maso, Gianni Dal, Frankowska, Hélène},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Discontinuous Lagrangians; Hamilton-Jacobi equations; viability theory; viscosity solutions.; discontinuous Lagrangians; Hamilton-Jacobi equations; viscosity solutions; Bolza problem},
language = {eng},
month = {3},
pages = {369-393},
publisher = {EDP Sciences},
title = {Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities},
url = {http://eudml.org/doc/197304},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Maso, Gianni Dal
AU - Frankowska, Hélène
TI - Value functions for Bolza problems with discontinuous Lagrangians and Hamilton-Jacobi inequalities
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 369
EP - 393
AB - We investigate the value function of the Bolza problem of the Calculus of Variations
$$ V (t,x)=\inf \left\{ \int_{0}^{t} L (y (s),y' (s))ds + \varphi (y(t)) : y \in W^{1,1} (0,t;\mathbb{R}^n),\; y(0)=x \right\},$$ with a lower semicontinuous Lagrangian L and a final cost $ \varphi $, and show that it is locally Lipschitz for t>0 whenever L is locally bounded. It also satisfies Hamilton-Jacobi inequalities in a generalized sense. When the Lagrangian is continuous, then the value function is the unique lower semicontinuous solution to the corresponding Hamilton-Jacobi equation, while for discontinuous Lagrangian we characterize the value function by using the so called contingent inequalities.
LA - eng
KW - Discontinuous Lagrangians; Hamilton-Jacobi equations; viability theory; viscosity solutions.; discontinuous Lagrangians; Hamilton-Jacobi equations; viscosity solutions; Bolza problem
UR - http://eudml.org/doc/197304
ER -

References

top
  1. M. Amar, G. Bellettini and S. Venturini, Integral representation of functionals defined on curves of W1,p. Proc. Roy. Soc. Edinburgh Sect. A128 (1998) 193-217.  
  2. L. Ambrosio, O. Ascenzi and G. Buttazzo, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl.142 (1989) 301-316.  
  3. J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. Advances in Mathematics, Supplementary Studies, edited by L. Nachbin (1981) 160-232.  
  4. J.-P. Aubin, A survey of viability theory. SIAM J. Control Optim.28 (1990) 749-788.  
  5. J.-P. Aubin, Viability Theory. Birkhäuser, Boston (1991).  
  6. J.-P. Aubin, Optima and Equilibria. Springer-Verlag, Berlin, Grad. Texts in Math.140 (1993).  
  7. J.-P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag, Berlin, Grundlehren Math. Wiss.264 (1984).  
  8. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis. Wiley & Sons, New York (1984).  
  9. J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhäuser, Boston (1990).  
  10. E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonian. Comm. Partial Differential Equations15 (1990) 1713-1742.  
  11. J.W. Bebernes and J.D. Schuur, The Wazewski topological method for contingent equations. Ann. Mat. Pura Appl.87 (1970) 271-280.  
  12. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. (1989).  
  13. L. Cesari, Optimization Theory and Applications. Problems with Ordinary Differential Equations. Springer-Verlag, Berlin, Appl. Math.17 (1983).  
  14. B. Cornet, Regular properties of tangent and normal cones. Cahiers de Maths. de la Décision No. 8130 (1981).  
  15. M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277 (1983) 1-42.  
  16. G. Dal Maso and L. Modica, Integral functionals determined by their minima. Rend. Sem. Mat. Univ. Padova76 (1986) 255-267.  
  17. C. Dellacherie, P.-A. Meyer, Probabilités et potentiel. Hermann, Paris (1975).  
  18. H. Frankowska, L'équation d'Hamilton-Jacobi contingente. C. R. Acad. Sci. Paris Sér. I Math.304 (1987) 295-298.  
  19. H. Frankowska, Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations. Appl. Math. Optim.19 (1989) 291-311.  
  20. H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, in Proc. of IEEE CDC Conference. Brighton, England (1991).  
  21. H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim.31 (1993) 257-272.  
  22. H. Frankowska, S. Plaskacz and T. Rzezuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation. J. Differential Equations116 (1995) 265-305.  
  23. G.N. Galbraith, Extended Hamilton-Jacobi characterization of value functions in optimal control. Preprint Washington University, Seattle (1998).  
  24. H.G. Guseinov, A.I. Subbotin and. V.N. Ushakov, Derivatives for multivalued mappings with application to game-theoretical problems of control. Problems Control Inform.14 (1985) 155-168.  
  25. A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim.15 (1977) 521-521 and 991-1000.  
  26. C. Olech, Weak lower semicontinuity of integral functionals. J. Optim. Theory Appl.19 (1976) 3-16.  
  27. T. Rockafellar, Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization. Math. Oper. Res.6 (1981) 424-436.  
  28. T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag, Berlin, Grundlehren Math. Wiss.317 (1998).  
  29. A.I. Subbotin, A generalization of the basic equation of the theory of the differential games. Soviet. Math. Dokl.22 (1980) 358-362.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.