Integral functionals determined by their minima

Gianni Dal Maso; Luciano Modica

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 255-267
  • ISSN: 0041-8994

How to cite

top

Dal Maso, Gianni, and Modica, Luciano. "Integral functionals determined by their minima." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 255-267. <http://eudml.org/doc/108045>.

@article{DalMaso1986,
author = {Dal Maso, Gianni, Modica, Luciano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {integral functional; minima; Dirichlet problems},
language = {eng},
pages = {255-267},
publisher = {Seminario Matematico of the University of Padua},
title = {Integral functionals determined by their minima},
url = {http://eudml.org/doc/108045},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Modica, Luciano
TI - Integral functionals determined by their minima
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 255
EP - 267
LA - eng
KW - integral functional; minima; Dirichlet problems
UR - http://eudml.org/doc/108045
ER -

References

top
  1. [1] L. Carbone - C. Sbordone, Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl., IV, 422 (1979), pp. 1-60. Zbl0474.49016
  2. [2] G. Dal Maso - L. Modica, Nonlinear stochastic homogenization (to appear on Annali di Matematica Pura e Applicata). Zbl0607.49010MR870884
  3. [3] G. Dal Maso - L. Modica, Nonlinear stochastic homogenization and ergodic theory (to appear on J. reine angew. Math.). Zbl0582.60034MR850613
  4. [4] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Mat. Fis. Natur., (8), 58 (1975), pp. 842-850. Zbl0339.49005MR448194
  5. [5] E. De Giorgi - S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del II ordine, Boll. Un. Mat. Ital., (4), 8 (1973), pp. 391-411. Zbl0274.35002MR348255
  6. [6] I. Ekeland - R. Temam, Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, Vol. 1, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  7. [7] N. Fusco - J. Hutchinson, C1.α partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54 (1985), pp. 121-144. Zbl0587.49005
  8. [8] N. Fusco - G. Moscariello, L2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl., IV, 429 (1981), pp. 305-326. Zbl0483.49008MR648337
  9. [9] M. Giaquinta - E. Giusti, On the regularity of the minima of variational intevrals, Acta Math., 448 (1982), pp. 31-46. Zbl0494.49031MR666107
  10. [10] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math., 51 (1985), pp. 1-28. Zbl0573.49010MR788671
  11. [11] C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), pp. 25-53. Zbl0046.10803MR54865
  12. [12] R.T. Rockafellar, Convex Analysis, Princeton Math. Series 28, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  13. [13] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966 Zbl0142.01701MR210528

NotesEmbed ?

top

You must be logged in to post comments.