Integral functionals determined by their minima

Gianni Dal Maso; Luciano Modica

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 255-267
  • ISSN: 0041-8994

How to cite

top

Dal Maso, Gianni, and Modica, Luciano. "Integral functionals determined by their minima." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 255-267. <http://eudml.org/doc/108045>.

@article{DalMaso1986,
author = {Dal Maso, Gianni, Modica, Luciano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {integral functional; minima; Dirichlet problems},
language = {eng},
pages = {255-267},
publisher = {Seminario Matematico of the University of Padua},
title = {Integral functionals determined by their minima},
url = {http://eudml.org/doc/108045},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Modica, Luciano
TI - Integral functionals determined by their minima
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 255
EP - 267
LA - eng
KW - integral functional; minima; Dirichlet problems
UR - http://eudml.org/doc/108045
ER -

References

top
  1. [1] L. Carbone - C. Sbordone, Some properties of Γ-limits of integral functionals, Ann. Mat. Pura Appl., IV, 422 (1979), pp. 1-60. Zbl0474.49016
  2. [2] G. Dal Maso - L. Modica, Nonlinear stochastic homogenization (to appear on Annali di Matematica Pura e Applicata). Zbl0607.49010MR870884
  3. [3] G. Dal Maso - L. Modica, Nonlinear stochastic homogenization and ergodic theory (to appear on J. reine angew. Math.). Zbl0582.60034MR850613
  4. [4] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Mat. Fis. Natur., (8), 58 (1975), pp. 842-850. Zbl0339.49005MR448194
  5. [5] E. De Giorgi - S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del II ordine, Boll. Un. Mat. Ital., (4), 8 (1973), pp. 391-411. Zbl0274.35002MR348255
  6. [6] I. Ekeland - R. Temam, Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, Vol. 1, North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  7. [7] N. Fusco - J. Hutchinson, C1.α partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54 (1985), pp. 121-144. Zbl0587.49005
  8. [8] N. Fusco - G. Moscariello, L2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl., IV, 429 (1981), pp. 305-326. Zbl0483.49008MR648337
  9. [9] M. Giaquinta - E. Giusti, On the regularity of the minima of variational intevrals, Acta Math., 448 (1982), pp. 31-46. Zbl0494.49031MR666107
  10. [10] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math., 51 (1985), pp. 1-28. Zbl0573.49010MR788671
  11. [11] C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), pp. 25-53. Zbl0046.10803MR54865
  12. [12] R.T. Rockafellar, Convex Analysis, Princeton Math. Series 28, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  13. [13] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966 Zbl0142.01701MR210528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.