# Remarks on weak stabilization of semilinear wave equations

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 6, page 553-560
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topHaraux, Alain. "Remarks on weak stabilization of semilinear wave equations." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 553-560. <http://eudml.org/doc/197309>.

@article{Haraux2010,

abstract = {
If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non
negligible sub-region for at least one sign of the velocity, all solutions of the
perturbed system converge weakly to 0 as time tends to infinity. We present here a
simple and natural method of proof of this kind of property, implying as a consequence
some recent very general results of Judith Vancostenoble.
},

author = {Haraux, Alain},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Weak stabilization; semilinear; wave equations.; semilinear conservative equation; essentially oscillatory solutions; nonmonotone damping term},

language = {eng},

month = {3},

pages = {553-560},

publisher = {EDP Sciences},

title = {Remarks on weak stabilization of semilinear wave equations},

url = {http://eudml.org/doc/197309},

volume = {6},

year = {2010},

}

TY - JOUR

AU - Haraux, Alain

TI - Remarks on weak stabilization of semilinear wave equations

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 6

SP - 553

EP - 560

AB -
If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non
negligible sub-region for at least one sign of the velocity, all solutions of the
perturbed system converge weakly to 0 as time tends to infinity. We present here a
simple and natural method of proof of this kind of property, implying as a consequence
some recent very general results of Judith Vancostenoble.

LA - eng

KW - Weak stabilization; semilinear; wave equations.; semilinear conservative equation; essentially oscillatory solutions; nonmonotone damping term

UR - http://eudml.org/doc/197309

ER -

## References

top- L. Amerio and G. Prouse, Abstract almost periodic functions and functional equations. Van Nostrand, New-York (1971). Zbl0215.15701
- J.M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim.5 (1979) 169-179. Zbl0405.93030
- M. Biroli, Sur les solutions bornées et presque périodiques des équations et inéquations d'évolution. Ann. Math. Pura Appl.93 (1972) 1-79. Zbl0281.35006
- T. Cazenave and A. Haraux, Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math.298 (1984) 449-452. Zbl0571.35074
- T. Cazenave and A. Haraux, Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Amer. Math. Soc.300 (1987) 207-233. Zbl0628.35058
- T. Cazenave and A. Haraux, Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal.76 (1988) 87-109. Zbl0656.35099
- T. Cazenave, A. Haraux and F.B. Weissler, Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3. C. R. Acad. Sci. Paris Sér. I Math.313 (1991) 237-241.
- T. Cazenave, A. Haraux and F.B. Weissler, A class of nonlinear completely integrable abstract wave equations. J. Dynam. Differential Equations5 (1993) 129-154. Zbl0783.35003
- T. Cazenave, A. Haraux and F.B. Weissler, Detailed asymptotics for a convex hamiltonian system with two degrees of freedom. J. Dynam. Differential Equations5 (1993) 155-187. Zbl0771.34038
- F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal. Non Linéaire11 (1994) 485-515. Zbl0841.93028
- A. Haraux, Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. I Math.287 (1978) 507-509. Zbl0396.35065
- A. Haraux, Comportement à l'infini pour certains systèmes dissipatifs non linéaires. Proc. Roy. Soc. Edinburgh Ser. A84 (1979) 213-234. Zbl0429.35013
- A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations59 (1985) 145-154. Zbl0535.35006
- A. Haraux and V. Komornik, Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana1 (1985) 57-77. Zbl0612.35077
- A. Haraux, Semi-linear hyperbolic problems in bounded domains, Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach (1987). Zbl0875.35054
- A. Haraux, Systèmes dynamiques dissipatifs et applications, R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris (1990).
- A. Haraux, Strong oscillatory behavior of solutions to some second order evolution equations, Publication du Laboratoire d'Analyse Numérique 94033, 10 p. Zbl0816.35087
- B.M. Levitan and V.V. Zhikov, Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982). Zbl0499.43005
- M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Ser. A113 (1989) 87-97. Zbl0699.35023
- J. Vancostenoble, Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks. SIAM J. Math. Anal.30 (1998) 140-154. Zbl0951.35092
- J. Vancostenoble, Weak asymptotic decay for a wave equation with weak nonmonotone damping, 17p (to appear). Zbl0973.35131
- G.F. Webb, Compactness of trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinburgh Ser. A84 (1979) 19-34. Zbl0414.34042

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.