Stabilization of second order evolution equations by unbounded nonlinear feedback

Francis Conrad; Michel Pierre

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 5, page 485-515
  • ISSN: 0294-1449

How to cite

top

Conrad, Francis, and Pierre, Michel. "Stabilization of second order evolution equations by unbounded nonlinear feedback." Annales de l'I.H.P. Analyse non linéaire 11.5 (1994): 485-515. <http://eudml.org/doc/78341>.

@article{Conrad1994,
author = {Conrad, Francis, Pierre, Michel},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {unbounded feedback; stabilization; nonlinear; abstract evolution equation; asymptotic stability; operator},
language = {eng},
number = {5},
pages = {485-515},
publisher = {Gauthier-Villars},
title = {Stabilization of second order evolution equations by unbounded nonlinear feedback},
url = {http://eudml.org/doc/78341},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Conrad, Francis
AU - Pierre, Michel
TI - Stabilization of second order evolution equations by unbounded nonlinear feedback
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 5
SP - 485
EP - 515
LA - eng
KW - unbounded feedback; stabilization; nonlinear; abstract evolution equation; asymptotic stability; operator
UR - http://eudml.org/doc/78341
ER -

References

top
  1. [BA-PRE] V. Barbu and Th. Precupanu, Convexity and Optimization in Banach Spaces, D. Reidel Pub. Co., Dordrecht, 1986 Zbl0594.49001MR860772
  2. [BE] C.D. Benchimol, A Note on Weak Stabilizability of Contraction Semi-groups, SIAM J. Contr. Opt., Vol. 16, 3, 1978, pp. 373-379. Zbl0384.93035MR490298
  3. [BRE] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, 1973. Zbl0252.47055MR348562
  4. [BRE1] H. Brezis, Analyse fonctionnelle, théorie et applications, Masson, 1983. Zbl0511.46001MR697382
  5. [CHE] G. Chen, Energy Decay Estimates and Exact Boundary Controllability for the Wave Equation in a Bounded Domain, J. Math. Pures Appl., Vol. 58, 1979, pp. 249-274. Zbl0414.35044MR544253
  6. [CHE-DE] G. Chen, M. Delfour, A.M. Krall and G. Payre, Modelling, Stabilization and Control of Serially Connected Beams, SIAM J. Contr. Opt., Vol. 25, 1987, pp. 526-546. Zbl0621.93053MR885183
  7. [CO] F. Conrad, Stabilization of Beams by Pointwise Feedback Control, SIAM J. Contr. Opt., Vol. 28, 1990, pp. 423-437. Zbl0695.93089MR1040468
  8. [CO-PI] F. Conrad and M. Pierre, Stabilization of Euler-Bernoulli Beam by Nonlinear Boundary Feedback, INRIA Report RR # 1235, 1990. 
  9. [CO-PI1] F. Conrad and M. Pierre, Stabilization of Second Order Evolution Equations by Unbounded Nonlinear Feedback, INRIA Report RR # 1679, 1992. MR1197222
  10. [DA] C.M. Dafermos, Application of the Invariance Principle for Compact Processes, J. Diff. Eqs., Vol. 9, 1971, pp. 291-299. Zbl0247.34068MR289907
  11. [DA1] C.M. Dafermos, Asymptotic Behavior of Solutions of Evolution Equations, in Nonlinear Evolution Equations, M. G. Crandall, ed., Ac. Press, 1978, pp. 103-123. Zbl0499.35015MR513814
  12. [DA-SLE] C.M. Dafermos and M. Slemrod, Asymptotic Behaviour of Nonlinear Contraction Semi-groups, J. Funct. Anal., Vol. 13, 1973, pp. 97-106. Zbl0267.34062MR346611
  13. [EL JAI-PRI] A. El Jai and T. Pritchard, Sensors and Actuators on Distributed Systems, Int. J. Control, Vol. 46, 1987, pp. 1139-1153. Zbl0628.93033MR912980
  14. [HA] A. Haraux, Stabilization of Trajectories for Some Weakly Damped Hyperbolic Equations, J. Diff. Eqs., Vol. 59, 2, 1985, pp. 145-154. Zbl0535.35006MR804885
  15. [HA1] A. Haraux, Comportement à l'infini pour certains systèmes dissipatifs non linéaires, Proc. of Royal Soc. Edinburgh, 84A, 1979, pp. 213-234. Zbl0429.35013MR559667
  16. [HO] L.F. Ho, Controllabilityand Stabilizability of Coupled Strings with Control Applied at the CoupledPoints, SIAM J. Control and Optimization, Vol. 31, 6, 1993, pp. 1416-1437. Zbl0793.93008MR1242209
  17. [KO-ZU] V. Komornik and E. Zukzua, A Direct Method for the Boundary Stabilization of the Wave EquationJ. Math. Pures et Appl., Vol. 69, 1990, pp. 33-54. Zbl0636.93064MR1054123
  18. [LA] I. Lasiecka, Stabilization of Wave and Plate-like Equations with Nonlinear Dissipation on the Boundary, J. Diff. Eqs., Vol. 79, 2, 1989, pp. 340-381. Zbl0694.35102MR1000694
  19. [LA1] I. Lasiecka, Asymptotic Behaviour of the Solution to Wave Equation with Nonlinear Damping on the Boundary, 8th Int. Conf. Analysis and Optimization of Systems, Antibes, Lect. Notes in Contr. and Inf. Sci., Vol. 111; A. Bensoussan, J. L. Lions Eds., 1988, pp. 472-483. Zbl0675.93052MR956291
  20. [LAG] J.E. Lagnese, Decay of Solutions of the Wave Equation in a Bounded Region with Boundary Dissipation, J. Diff. Eqs, Vol. 50, 1983, pp. 163-182. Zbl0536.35043MR719445
  21. [LAG1] J.E. Lagnese, Boundary Stabilization of Thin Plates, Siam (Studies in AppliedMathematics), 1989. Zbl0696.73034MR1061153
  22. [Q-R] J.P. Quinn and D.L. Russell, Asymptotic Stability and Energy Decay Rates for Solution of Hyperbolic Equations with Boundary Damping, Proc. Roy. Soc. Edinburgh, Sect. A, 77, 1977, pp. 97-127. Zbl0357.35006MR473539
  23. [RO] R.T. Rockafellar, ConvexAnalysis, Princeton Univ. Press, 1972. Zbl0193.18401MR274683
  24. [SLE] M. Slemrod, Feedback Stabilization of a Linear Control System in Hilbert Space with an a priori Bounded Control, Math. Control Signals Systems, 1988, pp. 265-285. Zbl0676.93057MR997216
  25. [TRI] R. Triggiani, Extension of Rank Conditions for Controllability and Observability to Banach Spaces and Unbounded Operators, SIAM J. Contr. Opt., Vol. 14, 2, 1976, pp. 313-338. Zbl0326.93003MR479499
  26. [Y] Y. You, Controllability and Stabilizability of Vibrating Simply Supported Plate With Pointwise Control, Adv. in Appl. Math., Vol. 10, 1989, pp. 324-343. Zbl0691.73039MR1008559
  27. [ZU] E. Zuazua, Uniform Stabilization of the Wave Equation by Nonlinear Boundary Feedback, SIAM J. Contr. Opt., Vol. 28, 1990, pp. 466-477. Zbl0695.93090MR1040470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.