Boundary stabilization of Maxwell's equations with space-time variable coefficients
Serge Nicaise; Cristina Pignotti
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 9, page 563-578
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- H. Barucq and B. Hanouzet, Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II. C. R. Acad. Sci. Paris Sér. I Math.316 (1993) 1019-1024.
- C. Castro and E. Zuazua, Localization of waves in 1-d highly heterogeneous media. Arch. Rational Mech. Anal.164 (2002) 39-72.
- M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Israel J. Math.11 (1972) 57-94.
- R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Vol. 3 (1990), Vol. 5 (1992).
- M. Eller, J.E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp. Appl. Math.21 (2002) 135-165.
- L.C. Evans, Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math.26 (1977) 1-42.
- P. Grisvard, Elliptic problems in nonsmooth Domains. Pitman, Boston, Monogr. Stud. Math.21 (1985).
- T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan19 (1967) 508-520.
- T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, CIME, II Ciclo. Cortona (1976) 125-191.
- T. Kato, Abstract differential equations and nonlinear mixed problems. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Lezione Fermiane, Pisa (1985).
- V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Collection RMA Paris 36 (1994).
- V. Komornik, Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J.4 (1994) 47-61.
- J.E. Lagnese, Exact controllability of Maxwell's equations in a general region. SIAM J. Control Optim.27 (1989) 374-388.
- C.-Y. Lin, Time-dependent nonlinear evolution equations. Differential Integral Equations15 (2002) 257-270.
- S. Nicaise, M. Eller and J.E. Lagnese, Stabilization of heterogeneous Maxwell's equations by nonlinear boundary feedbacks. EJDE2002 (2002) 1-26.
- S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem. SIAM J. Control Optim.38 (2000) 1145-1170.
- L. Paquet, Problèmes mixtes pour le système de Maxwell. Ann. Fac. Sci. Toulouse Math.4 (1982) 103-141.
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag,, Appl. Math. Sci.44 (1983).
- K.D. Phung, Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV5 (2000) 87-137.
- C. Pignotti, Observability and controllability of Maxwell's equations. Rend. Mat. Appl.19 (1999) 523-546.