On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 593-611
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topRifford, Ludovic. "On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 593-611. <http://eudml.org/doc/197327>.
@article{Rifford2010,
abstract = {
Let $\dot\{x\}=f(x,u)$ be a general control system; the existence of a
smooth control-Lyapunov function does not imply the existence of a continuous
stabilizing feedback. However, we show that it allows us to design a
stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover,
we recall a definition of a control-Lyapunov function
in the case of a nonsmooth function; it is based on Clarke's
generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a
classical control-Lyapunov function. This property leads to a generalization
of a result on the systems with integrator.
},
author = {Rifford, Ludovic},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Asymptotic stabilizability; converse Lyapunov theorem; nonsmooth
analysis; differential inclusion; and Krasovskii solutions; feedback.; asymptotic stabilizability; nonsmooth analysis; Filippov and Krasovskij solutions; feedback; epigraph; viability property; control-Lyapunov function},
language = {eng},
month = {3},
pages = {593-611},
publisher = {EDP Sciences},
title = {On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients},
url = {http://eudml.org/doc/197327},
volume = {6},
year = {2010},
}
TY - JOUR
AU - Rifford, Ludovic
TI - On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 593
EP - 611
AB -
Let $\dot{x}=f(x,u)$ be a general control system; the existence of a
smooth control-Lyapunov function does not imply the existence of a continuous
stabilizing feedback. However, we show that it allows us to design a
stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover,
we recall a definition of a control-Lyapunov function
in the case of a nonsmooth function; it is based on Clarke's
generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a
classical control-Lyapunov function. This property leads to a generalization
of a result on the systems with integrator.
LA - eng
KW - Asymptotic stabilizability; converse Lyapunov theorem; nonsmooth
analysis; differential inclusion; and Krasovskii solutions; feedback.; asymptotic stabilizability; nonsmooth analysis; Filippov and Krasovskij solutions; feedback; epigraph; viability property; control-Lyapunov function
UR - http://eudml.org/doc/197327
ER -
References
top- Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal.7 (1983) 1163-1173.
- J.-P. Aubin, Viability theory. Birkhäuser Boston Inc., Boston, MA (1991).
- J.P. Aubin and A. Cellina, Differential Inclusions. Springer-Verlag (1984).
- J.P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser (1990).
- C.I. Byrnes and A. Isidori, New results and examples in nonlinear feedback stabilization. Systems Control Lett.12 (1989) 437-442.
- F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim.39 (2000) 25-48.
- F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Classics Appl. Math. 5 (1990).
- F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations149 (1998) 69-114.
- F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998).
- J.-M. Coron, On the stabilization of some nonlinear control systems: Results, tools, and applications, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 307-367.
- J.-M. Coron, Some open problems in control theory, in Differential geometry and control (Boulder, CO, 1997). Providence, RI, Amer. Math. Soc. (1999) 149-162.
- J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems Estim. Control4 (1994) 67-84.
- K. Deimling, Multivalued Differential Equations. de Gruyter, Berlin (1992).
- A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers (1988).
- R. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. Birkhäuser (1996).
- R.A. Freeman and P.V. Kokotovic, Backstepping design with nonsmooth nonlinearities, in Proc. of the IFAC Nonlinear Control Systems design symposium. Tahoe City, California (1995).
- O. Hájek, Discontinuous differential equations. I, II. J. Differential Equations32 (1979) 149-170, 171-185.
- J.-B. Hiriart-Urruty and C. Imbert, Les fonctions d'appui de la jacobienne généralisée de Clarke et de son enveloppe plénière. C. R. Acad. Sci. Paris Sér. I Math.326 (1998) 1275-1278.
- N.N. Krasovskiĭ, Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay. Stanford University Press, Stanford, California (1963). Translated by J.L. Brenner.
- J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion. Amer. Math. Soc. Transl. Ser. 224 (1956) 19-77.
- Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. Nonlinear Anal.37 (1999) 813-840.
- Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim.34 (1996) 124-160.
- J.L. Massera, Contributions to stability theory. Ann. of Math. (2)64 (1956) 182-206.
- E. Michael, Continuous selections. I. Ann. of Math. (2)63 (1956) 361-382.
- L. Praly and A.R. Teel, On assigning the derivative of a disturbance attenuation clf, in Proc. of the 37th IEEE conference on decision and control. Tampa, Florida (1998).
- L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim.39 (2000) 1043-1064.
- L. Rosier, Étude de quelques problèmes de stabilisation, Ph.D. Thesis. ENS de Cachan (1993).
- E.D. Sontag, A ``universal'' construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett.13 (1989) 117-123.
- E.D. Sontag, Mathematical Control Theory. Springer-Verlag, New York, Texts Appl. Math. 6 (1990) (Second Edition, 1998).
- E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear analysis, differential equations and control (Montreal, QC, 1998). Kluwer Acad. Publ., Dordrecht (1999) 551-598.
- A.R. Teel and L. Praly, A smooth Lyapunov function from a class- estimate involving two positive semidefinite functions. ESAIM: COCV5 (2000) 313-367.
- J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal.13 (1989) 3-74.
- J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems2 (1989) 343-357.
- J. Tsinias, A local stabilization theorem for interconnected systems. Systems Control Lett.18 (1992) 429-434.
- J. Tsinias, An extension of Artstein's theorem on stabilization by using ordinary feedback integrators. Systems Control Lett.20 (1993) 141-148.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.