Dynamic stabilization of systems via decoupling techniques

Farid Ammar-Khodja; Ahmed Bader; Assia Benabdallah

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 4, page 577-593
  • ISSN: 1292-8119

Abstract

top
We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry et al.

How to cite

top

Ammar-Khodja, Farid, Bader, Ahmed, and Benabdallah, Assia. "Dynamic stabilization of systems via decoupling techniques." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 577-593. <http://eudml.org/doc/197329>.

@article{Ammar2010,
abstract = { We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry et al.},
author = {Ammar-Khodja, Farid, Bader, Ahmed, Benabdallah, Assia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Stabilization; thermoelasticity.; sufficient conditions; exponential stability; linear thermoelasticity; multiplier technique},
language = {eng},
month = {3},
pages = {577-593},
publisher = {EDP Sciences},
title = {Dynamic stabilization of systems via decoupling techniques},
url = {http://eudml.org/doc/197329},
volume = {4},
year = {2010},
}

TY - JOUR
AU - Ammar-Khodja, Farid
AU - Bader, Ahmed
AU - Benabdallah, Assia
TI - Dynamic stabilization of systems via decoupling techniques
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 577
EP - 593
AB - We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry et al.
LA - eng
KW - Stabilization; thermoelasticity.; sufficient conditions; exponential stability; linear thermoelasticity; multiplier technique
UR - http://eudml.org/doc/197329
ER -

References

top
  1. F. Ammar-Khodja and A. Benabdallah, Sufficient conditions for uniform stabilization of second order equations by dynamic controllers. Dynamics of Continuous, Discrete and Impulsive Systems, to appear.  
  2. F. Ammar-Khodja and A. Benabdallah, Conditions suffisantes pour la stabilisation uniforme d'équations du second ordre par des contrôleurs dynamiques. C.R. Acad. Sci. Sér. I Math.323 (1996) 615-620.  
  3. F. Ammar Khodja, A. Benabdallah and D. Teniou, Coupled systems. Abstract and Appl. Anal.1 (1996) 327-340.  
  4. F.V. Atkinson, H. Langer, R. Mennicken and A.A. Shkalikov, The essential spectrum of some matrix operators. Math. Nachr.167 (1994) 5-20.  
  5. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1065.  
  6. A.V. Balakrishnan, Applied functional analysis, Springer-Verlag, New-York, Heidelberg (1976).  
  7. Bourgeat A., Simulating gas-liquid flow in a well-reservoir system. Numerical Methods in Engineering and Applied Sciences, H. Adler, J.C. Heinrich, S. Lavanchy, E. Onate and B. Suarez, Eds., CIMNE, Barcelona (1992).  
  8. T. Cazenave and Dickstein F., On the initial value problem for a linear model of well-reservoir coupling (1996) preprint.  
  9. S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math.136 (1989) 15-55.  
  10. R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique2, Masson (1987).  
  11. R.F. Curtain and G. Weiss, Dynamic stabilization of regular linear systems. IEEE Trans. Automat. Contr.42 (1997) 4-21.  
  12. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, Texts in Applied Mathematics21 (1995).  
  13. K.-J. Engel, Operator matrices and systems of evolution equations (1998).  
  14. A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxième ordre en temps. Portugal Math.46 (1989) 245-258.  
  15. A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, RMA 17, Masson (1991).  
  16. F. Huang, Characteristic conditions for exponential stability of linear dynamic systems in Hilbert spaces. Ann. Diff. Eqs.1 (1985).  
  17. D.B. Henry, O. Lopes and A. Perissinitto Jr., On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal., TMA21 (1993) 65-75.  
  18. J.E. Lagnese and J.L. Lions, Modelling Analysis and Control of Thin Plates, RMA 6, Masson (1988).  
  19. Lasiecka I. and Triggiani R., Differential and Algebraic Riccati Equations ..., Springer-Verlag, Lecture Notes in Control and Information Sciences164 (1991).  
  20. Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems with various dampings (1998) preprint.  
  21. G. Lebeau and E. Zuazua E., Null controllability of a system of linear thermoelasticity (1995) preprint.  
  22. R. Nagel, Towards a ``Matrix Theory'' for unbounded operators matrices. Math. Z. 201 (1989) 57-68.  
  23. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Applied Mathematical Sciences 44 (1983).  
  24. J.E. Munoz Rivera and R. Racke, Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type. SIAM J. Math. Anal. (1995) 1547-1563.  
  25. D.L. Russell, A comparison of certain elastic dissipation mechanisms via decoupling and projection techniques. Quart. Appl. Math. 49 (1991) 373-396.  
  26. D.L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl. 173 (1993) 339-358.  
  27. L. De Teresa and E. Zuzua, Controllability for the linear system of thermoelastic plates. Adv. Diff. Eqs. (1996) 369-402.  
  28. J. Zabcyk, Mathematical Control Theory: An Introduction, Birkhauser (1995).  
  29. E. Zuzua, Controllability of the linear system of thermoelasticity. J. Math. Pures Appl.74 (1995) 303-346.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.