# A-Quasiconvexity: Relaxation and Homogenization

Andrea Braides; Irene Fonseca; Giovanni Leoni

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 5, page 539-577
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topBraides, Andrea, Fonseca, Irene, and Leoni, Giovanni. "A-Quasiconvexity: Relaxation and Homogenization." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 539-577. <http://eudml.org/doc/197360>.

@article{Braides2010,

abstract = {
Integral representation of relaxed energies and of
Γ-limits of functionals
$$
(u,v)\mapsto
\int\_\Omega f( x,u(x),v(x))\,dx
$$
are obtained when sequences of fields v may develop oscillations and are
constrained to satisfy
a system of first order linear partial differential equations. This
framework includes the
treatement of divergence-free fields, Maxwell's equations in
micromagnetics, and curl-free
fields. In the latter case classical relaxation theorems in W1,p, are
recovered.
},

author = {Braides, Andrea, Fonseca, Irene, Leoni, Giovanni},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {$\{\cal A\}$-quasiconvexity; equi-integrability; Young measure; relaxation; Γ-convergence;
homogenization.; Young measures; Gamma-convergence; differential constraint; integral representation of the relaxed energy},

language = {eng},

month = {3},

pages = {539-577},

publisher = {EDP Sciences},

title = {A-Quasiconvexity: Relaxation and Homogenization},

url = {http://eudml.org/doc/197360},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Braides, Andrea

AU - Fonseca, Irene

AU - Leoni, Giovanni

TI - A-Quasiconvexity: Relaxation and Homogenization

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 5

SP - 539

EP - 577

AB -
Integral representation of relaxed energies and of
Γ-limits of functionals
$$
(u,v)\mapsto
\int_\Omega f( x,u(x),v(x))\,dx
$$
are obtained when sequences of fields v may develop oscillations and are
constrained to satisfy
a system of first order linear partial differential equations. This
framework includes the
treatement of divergence-free fields, Maxwell's equations in
micromagnetics, and curl-free
fields. In the latter case classical relaxation theorems in W1,p, are
recovered.

LA - eng

KW - ${\cal A}$-quasiconvexity; equi-integrability; Young measure; relaxation; Γ-convergence;
homogenization.; Young measures; Gamma-convergence; differential constraint; integral representation of the relaxed energy

UR - http://eudml.org/doc/197360

ER -

## References

top- E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal.86 (1984) 125 -145.
- M. Amar and V. De Cicco, Relaxation of quasi-convex integrals of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A124 (1994) 927-946.
- L. Ambrosio, S. Mortola and V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl.70 (1991) 269-323.
- E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim.22 (1984) 570-598.
- J.M. Ball, A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys.344 (1989) 207-215.
- J.M. Ball and F. Murat, Remarks on Chacon's biting lemma. Proc. Amer. Math. Soc.107 (1989) 655-663.
- H. Berliocchi and J.M. Lasry, Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France101 (1973) 129-184.
- A. Braides, A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL Mem. Sci. Fis. Natur. (5)104 (1986) 261-281.
- A. Braides, Relaxation of functionals with constraints on the divergence. Ann. Univ. Ferrara Ser. VII (N.S.)33 (1987) 157-177.
- A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Clarendon Press, Oxford (1998).
- A. Braides, A. Defranceschi and E. Vitali, Homogenization of free-discontinuity problems. Arch. Rational Mech. Anal.135 (1996) 297-356.
- G. Buttazzo, Semicontinuity, relaxation and integral representation problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser.207 (1989).
- B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989).
- B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Springer-Verlag, Berlin, Lecture Notes in Math.922 (1982).
- G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993).
- G. Dal Maso, A. Defranceschi and E. Vitali (private communication).
- A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal.125 (1993) 99-143.
- I. Fonseca, The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl.67 (1988) 175-195.
- I. Fonseca, G. Leoni, J. Malý and R. Paroni (in preparation).
- I. Fonseca and S. Müller, Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal.23 (1992) 1081-1098.
- I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in $BV(\Omega ,{\mathbb{R}}^{p})$ for integrands $f(x,u,\nabla u)$. Arch. Rational Mech. Anal.123 (1993) 1-49.
- I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal.30 (1999) 1355-1390.
- N. Fusco, Quasi-convessitá e semicontinuitá per integrali di ordine superiore. Ricerche Mat.29 (1980) 307-323.
- M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems. J. reine angew. Math.311/312 (1979) 145-169.
- M. Guidorzi and L. Poggiolini, Lower semicontinuity for quasiconvex integrals of higher order. NoDEA Nonlinear Differential Equations Appl.6 (1999) 227-246.
- J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 (1994).
- P. Marcellini, Approximation of quasiconvex functions and semicontinuity of multiple integrals. Manuscripta Math.51 (1985) 1-28.
- P. Marcellini and C. Sbordone, Semicontinuity problems in the Calculus of Variations. Nonlinear Anal.4 (1980) 241-257.
- N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc.119 (1965) 125-149.
- C.B. Morrey, Multiple Integrals in the calculus of Variations. Springer-Verlag, Berlin (1966).
- S. Müller, Variational models for microstructures and phase transitions, in Calculus of Variations and Geometric Evolution Problems, edited by S. Hildebrant et al. Springer-Verlag, Berlin, Lecture Notes in Math.1713 (1999) 85-210.
- F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sw. (4)8 (1981) 68-102.
- P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser, Boston (1997).
- L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser.39 (1979) 136-212.
- L. Tartar, The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Eq., edited by J.M. Ball. Riedel (1983).
- L. Tartar, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lectures Notes in Phys.195 (1984) 384-412.
- L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A115 (1990) 193-230.
- L. Tartar, On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures, in Developments in Partial Differential Equations and Applications to Mathematical Physics, edited by Buttazzo, Galdi and Zanghirati. Plenum, New York (1991).
- L. Tartar, Some remarks on separately convex functions, in Microstructure and Phase Transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen. Springer-Verlag, IMA J. Math. Appl.54 (1993) 191-204.
- L.C. Young, Lectures on Calculus of Variations and Optimal Control Theory. W.B. Saunders (1969).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.