Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems
Faker Ben Belgacem; Padmanabhan Seshaiyer; Manil Suri
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 3, page 591-608
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBen Belgacem, Faker, Seshaiyer, Padmanabhan, and Suri, Manil. "Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems." ESAIM: Mathematical Modelling and Numerical Analysis 34.3 (2010): 591-608. <http://eudml.org/doc/197446>.
@article{BenBelgacem2010,
abstract = {
We present an improved, near-optimal hp error estimate for a
non-conforming finite element method, called the mortar method (M0). We
also present a new hp mortaring technique, called the mortar method (MP),
and derive h, p and hp error estimates for it, in the presence of
quasiuniform and non-quasiuniform meshes. Our theoretical results,
augmented by the computational evidence we present, show that like (M0), (MP)
is also a viable mortaring technique for the hp method.
},
author = {Ben Belgacem, Faker, Seshaiyer, Padmanabhan, Suri, Manil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Non conforming; mortar method; hp finite elements; optimal convergence; mortar finite element methods; second-order elliptic problems; error estimate; non-conforming finite element method},
language = {eng},
month = {3},
number = {3},
pages = {591-608},
publisher = {EDP Sciences},
title = {Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems},
url = {http://eudml.org/doc/197446},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Ben Belgacem, Faker
AU - Seshaiyer, Padmanabhan
AU - Suri, Manil
TI - Optimal convergence rates of hp mortar finite element methods for second-order elliptic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 3
SP - 591
EP - 608
AB -
We present an improved, near-optimal hp error estimate for a
non-conforming finite element method, called the mortar method (M0). We
also present a new hp mortaring technique, called the mortar method (MP),
and derive h, p and hp error estimates for it, in the presence of
quasiuniform and non-quasiuniform meshes. Our theoretical results,
augmented by the computational evidence we present, show that like (M0), (MP)
is also a viable mortaring technique for the hp method.
LA - eng
KW - Non conforming; mortar method; hp finite elements; optimal convergence; mortar finite element methods; second-order elliptic problems; error estimate; non-conforming finite element method
UR - http://eudml.org/doc/197446
ER -
References
top- Y. Achdou, Y. Maday and O.B. Widlund, Méthode itérative de sous-structuration pour les éléments avec joints. C.R. Acad. Sci. Paris Série I 322 (1996) 185-190.
- Y. Achdou, Y. Maday and O.B. Widlund, Iterative substructuring preconditioners for the mortar finite element method in two dimensions. SIAM J. Num. Anal.36 (1999) 551-580.
- Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element and boundary element methods. SIAM J. Num. Anal.32 (1995) 985-1016.
- I. Babuska and M. Suri, The h-p-version of the finite element method with quasi-uniform meshes. Modél. Math. et Anal. Numér.21 (1987) 199-238.
- I. Babuska and M. Suri, The p and h-p-versions of the finite element method: basic principles and properties. SIAM Review36 (1984) 578-632.
- I. Babuska and M. Suri, The optimal convergence rate of the p-Version of the finite element method. SIAM J. Num. Anal.24 (1987) 750-776.
- F. Ben Belgacem, Disrétisations 3D non conformes par la méthode de décomposition de domaine des éléments avec joints : Analyse mathématique et mise en œuvre pour le problème de Poisson. Thèse de l'Université Pierre et Marie Curie, Paris VI. Note technique EDF, ref. HI72/93017 (1993).
- F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Num. Mathematik (to appear).
- F. Ben Belgacem and Y. Maday, Non conforming spectral element methodology tuned to parallel implementation. Compu. Meth. Appl. Mech. Eng.116 (1994) 59-67.
- C. Bernardi, N. Débit and Y. Maday, Coupling finite element and spectral methods: first results. Math. Compu.54 (1990), 21-39.
- C. Bernardi, M. Dauge and Y. Maday, Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube. Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Lecture Notes in Pure and Applied Mathematics167 Dekker (1994) 27-46.
- C. Bernardi and Y. Maday, Spectral, spectral element and mortar element methods. Technical report of the Laboratoire d'analyse numérique, Université Pierre et Marie Curie, Paris VI, 1998.
- C. Bernardi and Y. Maday, Relèvement de traces polynomiales et applications. RAIRO Modél. Math. Anal. Numér.24 (1990) 557-611.
- C. Bernardi, Y. Maday and A. T. Patera, A new non conforming approach to domain decomposition: The mortar element method. Pitman, H. Brezis, J.-L. Lions Eds., Collège de France Seminar (1990).
- C. Bernardi, Y. Maday and G. Sacchi-Landriani, Non conforming matching conditions for coupling spectral and finite element methods. Appl. Numer. Math.54 (1989) 64-84.
- A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. Symposia Mathematica10 (1972) 295-313.
- S. Brenner, A non-standard finite element interpolation estimate. Research Report 1998:07, Department of Mathematics, University of South Carolina (1998).
- P.-G. Ciarlet, The finite element Method for Elliptic Problems. North Holland (1978).
- N. Débit, La méthode des éléments avec joints dans le cas du couplage des méthodes spectrales et méthodes des éléments finis : Résolution des équations de Navier-Stokes. Thèse de l'Université Pierre et Marie Curie, Paris VI (1992).
- M. Dorr, On the discretization of inter-domain coupling in elliptic boundary-value problems via the p-Version of the finite element method. T.F. Chan, R. Glowinski, J. Periaux. O.B. Widlund, Eds., SIAM (1989).
- V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Springer Verlag (1986).
- P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics24 (Pitman, 1985).
- W. Gui and I. Babuska, The h-p-version of the finite element method in one dimension. Num. Mathematik3 (1986) 577-657.
- B. Guo and I. Babuska, The h-p-version of the finite element method. Compu. Mech.1 (1986), Part 1: 21-41, Part 2: 203-220.
- P. Seshaiyer, Non-Conforming h-p finite element methods. Doctoral Thesis, University of Maryland Baltimore County (1998).
- P. Seshaiyer and M. Suri,: Uniform h-p Convergence results for the mortar finite element method. Math. Compu. PII: S 0025-5718(99)01083-2 (to appear).
- P. Seshaiyer and M. Suri, Convergence results for the non-Conforming h-p methods: The mortar finite element method. AMS, Cont. Math.218 (1998) 467-473.
- P. Seshaiyer and M. Suri, h-p submeshing via non-conforming finite element methods. Submitted to Compu. Meth. Appl. Mech. Eng. (1998).
- G. Strang and G. J. Fix, An analysis of the finite element method. Wellesly, Cambridge Press Masson (1973).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.