The h - p version of the finite element method with quasiuniform meshes

I. Babuška; Manil Suri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 2, page 199-238
  • ISSN: 0764-583X

How to cite

top

Babuška, I., and Suri, Manil. "The $h-p$ version of the finite element method with quasiuniform meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.2 (1987): 199-238. <http://eudml.org/doc/193500>.

@article{Babuška1987,
author = {Babuška, I., Suri, Manil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {h-p version of the finite element method; quasiuniform meshes; corner singularity; Error estimates; numerical example; plain strain elasticity problem; L-shaped domain; asymptotic},
language = {eng},
number = {2},
pages = {199-238},
publisher = {Dunod},
title = {The $h-p$ version of the finite element method with quasiuniform meshes},
url = {http://eudml.org/doc/193500},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Babuška, I.
AU - Suri, Manil
TI - The $h-p$ version of the finite element method with quasiuniform meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 2
SP - 199
EP - 238
LA - eng
KW - h-p version of the finite element method; quasiuniform meshes; corner singularity; Error estimates; numerical example; plain strain elasticity problem; L-shaped domain; asymptotic
UR - http://eudml.org/doc/193500
ER -

References

top
  1. [1] I. BABUSKA and A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 3-359, Academic Press, New York, 1972. Zbl0268.65052MR421106
  2. [2] I. BABUSKA, M. R. DORR, Error estimates for the combined h and p versions of finite element method. Numer. Math. 37 (1981), 252-277. Zbl0487.65058MR623044
  3. [3] I. BABUSKA, W. GUI, B. GUO, B. A. SZABO, Theory and performance of the h-p version of the finite element method. To appear. 
  4. [4] I. BABUSKA, R. B. KELLOGG, J. PITKÄRANTA, Direct and inverse error estimates for finite element method. . SIAM J. Numer. Anal. 18 (1981), 515-545. Zbl0487.65059
  5. [5] I. BABUSKA, M. SURI, The optimal convergence rate of the p-version of the finite element method. Tech. Note BN-1045, Institute for Physical Science and Technology, University of Maryland, Oct. 1985. Zbl0637.65103
  6. [6] I. BABUSKA, B. A. SZABO and I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981), 515-545. Zbl0487.65059MR615529
  7. [7] I. BABUSKA and B. A. SZABO, On the rate of convergence of finite element method. Internat. J. Numer. Math. Engrg. 18 (1982), 323-341. Zbl0498.65050MR648550
  8. [8] I. BERGH and J. LOFSTROM, Interpolation Spaces. Springer, Berlin, Heidelberg, New York, 1976. Zbl0344.46071
  9. [9] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, 1978. Zbl0383.65058MR520174
  10. [10] M. R. DORR, The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984), 1180-1207. Zbl0572.65074MR765514
  11. [11] M. R. DORR, The Approximation of the Solutions of Elliptic Boundary-Value Problems via the p-Version of the Finite Element Method. SIAM J. Numer. Anal. 23 (1986), 58-77. Zbl0617.65109MR821906
  12. [12] P. GRISVARD, Elliptic problems in nonsmooth domains. Pitman, Boston, 1985. Zbl0695.35060MR775683
  13. [13] W. GUI and I. BABUSKA, The h, p and h-p versions of the finite element method for one dimensional problem : Part 1 : The error analysis of the p-version. Tech. Note BN-1036 ; Part 2 : The error analysis of the h and h-p versions. Tech. Note BN-1037 ; Part 3 : The adaptive h-p version, Tech. Note BN-1038, IPST, University of Maryland, College Park, 1985. To appear in Nume. Math. 
  14. [14] B. GUO, I. BABUSKA, The h-p Version of the Finite Element Method. Part I : The basic approximation results. Part II : General results and applications. To appear in Comp. Mech. 1 (1986). Zbl0634.73059MR1017747
  15. [15] G. H. HARDY, T. E. LITTLEWOOD, G. POLYA, Inequalities. Cambridge University Press, Cambridge, 1934. Zbl0010.10703JFM60.0169.01
  16. [16] V. A. KONDRAT'EV, Boundary value problems for elliptic equations in domains with conic or angular points. Trans. Moscow Math. Soc. (1967), 227-313. Zbl0194.13405MR226187
  17. |17] J. L. LIONS, E. MAGENES, Non-homogeneous boundary value problems and applications-I. Springer-Verlag, Berlin, Heidelberg, New York, 1972. Zbl0223.35039
  18. [18] A. PINKUS, n-widths in Approximation Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985. Zbl0551.41001MR774404
  19. [19] E. M. STEIN, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N. J., 1970. Zbl0207.13501MR290095
  20. [20] G. STRANG and G. J. FIX, An Analysis of the Finite Element Method. Prentice-Hall, Inglewood Cliffs, 1973. Zbl0356.65096MR443377
  21. [21] B. A. SZABO, PROBE : Theoretical Manual. Noetic Technologies Corporation, St Louis, Missouri, 1985. 
  22. [22] B. A. SZABO, Computation of Stress Field Parameters in Area of Steep stress gradients. Tech. Note WU/CCM-85/1, Center for Computational Mechanics, Washington University, 1985. Zbl0586.73170
  23. [23] B. A. SZABO, Mesh Design of the p-Version of the Finite Element Method. Lecture at Joint ASME/ASCE Mechanics Conference, Albuquerque, New Mexico, June 24-26, 1985. Report WV/CCM-85/2, Center for Computational Mechanics, Washington University, St Louis. Zbl0587.73106
  24. [24] B. A. SZABO, Implementation of a Finite Element Software System with h- and p-Extension Capabilities. Proc., 8th Invitational UFEM Symposium : Unification of Finite Element Software Systems. Ed. by H. Kardestuncer, The University of Connecticut, May 1985. 

Citations in EuDML Documents

top
  1. Alexei Bespalov, Norbert Heuer, A new H(div)-conforming p-interpolation operator in two dimensions
  2. Alexei Bespalov, Norbert Heuer, A new (div)-conforming -interpolation operator in two dimensions
  3. Manil Suri, The p -version of the finite element method for elliptic equations of order 2 l
  4. Faker Ben Belgacem, Padmanabhan Seshaiyer, Manil Suri, Optimal convergence rates of h p mortar finite element methods for second-order elliptic problems
  5. Andrea Toselli, H P -finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form
  6. Andrea Toselli, -finite element approximations on non-matching grids for partial differential equations with non-negative characteristic form
  7. Faker Ben Belgacem, Padmanabhan Seshaiyer, Manil Suri, Optimal convergence rates of mortar finite element methods for second-order elliptic problems
  8. E. P. Stephan, M. Suri, The h - p version of the boundary element method on polygonal domains with quasiuniform meshes
  9. Christine Bernardi, Yvon Maday, Relèvement polynômial de traces et applications
  10. Alexei Bespalov, Norbert Heuer, The -version of the boundary element method with quasi-uniform meshes in three dimensions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.